Impact to Underground Sources of Drinking Water and Domestic Wells from Production Well Stimulation and Completion Practices in the Pavillion, WY Field

Dominic C. DiGiulio*,† and Robert B. Jackson†, ‡,§

†School of Earth, Energy, and Environmental Sciences, ‡Woods Institute for the Environment, and §Precourt Institute for Energy, Stanford University, Stanford, CA, 94305

Supporting Information

Table of Contents

Sections

A - Regional and Local Geology.	6
A.1 Structural Geology.	6
A.2 Identification of Source Rocks and Hydrocarbon Migration	8
A.3 Lithology of the Fort Union Formation.	10
A.4 Lithology of the Wind River Formation.	11
A.5 Lysite and Lost Cabin Members of the Wind River Formation.	12
A.6 EPA Lithologic Cross-Section through Pavillion Field.	14
B - Locations, Depths, and Major Ion Concentrations of Domestic Wells in and Around the Pavillion Fie	u 17
C – Summary of Production Well Construction and Stinulation	23
D – Extended Discussion on Impact to USDWs and Usalle Water from Well Stimulation	63
D.1 Examples of Potential Loss of Zonal Isolation (Data source: Well completion Reports and Sundry	
Notices, Search by API Number in Table SI C1).	63
D.2 Omissions to Bradenhead Testing.	65
D.3 Summary of Bradenhead Testing with Water Flow.	65
D.4 Summary of Major Ion Concentrations in Produced and Bradenhead Water	67
D.5 Summary of Fixed Gases, Light Hydrocarbon, and BTEX Analyses in String and Bradenhead Gas	68
D.6 Summary of Organic Compounds Detected in Produ ced Water Samples	69
E – Purging and Sample Results at MW01 and MW02	71
E.1 Monitoring Well Construction.	71
E.2 Purging at MW02.	80
E.3 Purging and Wellbore Model Development at MW01	82
E.4 Summary of Sample Results at MW01 and MW02	88

^{*} ddigiuli@stanford.edu

E.5 Discussion of Potential Cement-pH Interaction	93
E.6 Discussion of Potential Cement-Potassium Inter	action96
E.7 Discussion of Potential Cement-Glycol Interacti	on
F - Potential Impact of Unlined Pits on Domestic We	Ils104
G – Summary of Analytical Data Sources	120
References	127
Supporting In	nformation Tables
Office (SEO) permit provided when available. PGDW0: PGPW02. Information compiled from EPA ²⁷ , EPA ^{29,30} ,	
Table SI B2. Major ion concentrations of domestic well Department of Environmental Quality (WYDEQ) ³⁴ obta (PRBRC) through a Freedom of Information Act Reques	
Table SI C1. Production well construction summary (lifter from well completion reports using API number	
Table SI C2. Description of stimulation stages in the Pa completion reports using API search number	
	mulation from Material Safety and Data Sheets provided57
Table SI C4. Specified volumes of "gel" used with CO ₂ 2002 (1 barrel or bbl = 42 gallons or 159 L)	2 foam during hydraulic fracturing between 2001 and60
Table SI C5. Specified volumes of "WF-125, WF-130, N ₂ foam during hydraulic fracturing from 2001 to 2007	WF-135, and WF-12" polymer slurries with CO_2 and (1 barrel or bbl = 42 gallons or 159 L)60
Table SI C6. Volumes of slickwater used for hydraulic	fracturing (1 barrel or bbl = 42 gallons or 159 L)61
Table SI D1. Major Ions in Produced and Bradenhead V	Water. Data obtained using API number in Table SI C167
Table SI D2. String gas and bradenhead gas samples copressure. Concentrations in mole fractions x 100. Data of	ellected at production wells having sustained casing obtained using API number in Table SI C1
Table SI D3. Summary of organic compounds detected (contractor to EPA ³⁰). PGPPXX are EPA sample identif	in produced water by EPA Region 8 and Zymax ication codes
	drilling, mass ratios of product use, analyses of aqueous section in MW01 and MW0274
Table SI E2. Well design and input parameters for calculations volumes during Phase V sampling event	ulation of casing, borehole, and screen exchange
Table SI E3a. Summary of Organic Compound Detection	ons in MW0188

Table SI E3b. Summary of Field Parameters, Major Ions, and Dissolved Metals at MW01. 89
Table SI E4a. Summary of Organic Compound Detections in MW02. 90
Table SI E4b. Summary of Field Parameters, Major Ions, and Dissdved Metals at MW01 91
Table SI E5. Light Hydrocarbon and Isotope Analysis of Production Wells and EPA Monitoring Wells92
Table SI E6. Dissolved Inorganic Carbon, Water Isotopes, Tritium, SF6, and He in MW01 and MW02
Table SI F1. Summary of disposal of drilling mud and production fluids in from production wells fluids104
Table SI F2. Summary of disposal of drilling mud and production fluids in pits, results of soil and surficial ground-water sampling, volumes of soil excavation, distance and direction of domestic wells with 600 m of pits, review of completion and stimulation record by WOGCC31 of production wells associated with unlined pits, and recommendations by WOGCC ³² for further or no further investigation
Table SI F3. Summary of detection of light hydrocarbons and organic compounds in domestic wells less than and greater than 600 m from unlined pits. Concentrations in μg/L unless otherwise indicated
Table SI G1. Major reports summarizing data and/or data quality 120
Table SI G2. Summary of analytical methods used and sources of data and associated information on quality control and assurance. 121
Supporting Information Figures
Figure SI A1. Boundaries of the Wind River Basin, identification of major faults, and location of the Pavillion well field (red box). Modified was modified from Nelson and Kibler ⁸
Figure SI A2. Generalized stratigraphic columns and correlations of Pennsylvanian through Eocene strata in the Wind River Basin, Wyoming. The Pavillion Field is located in the western portion of the Wind River Basin. From Johnson et al. ³
Figure SI A3. Map illustrating transect used to develop a lithologic cross section across the Pavillion Field. From EPA ²⁷
Figure SI A4. Lithologic cross-section along transect illustrating undifferentiated sandstone and shale units. From EPA ²⁷
Figure SI A5. Pavillion Field plot illustrating locations of production wells, domestic wells, EPA monitoring wells, and unlined pits. Domestic wells sampled by EPA identified by last two digits of PGDWXX series. Unsampled domestic wells having a Wyoming State Engineer's Office (SEO) permit number identified with the prefix "P." Unsampled domestic wells lacking SEO permits not identified. Depths of domestic well provided in Table SI B1. Full names of production wells, abbreviated here, are provided in Table SI C1. Locations of unlined pits are approximated by locations of associated production wells.
Figure SI C1. Elevation (m) Absolute Mean Seal Level (AMSL) of open intervals of domestic wells <1 km from production wells, EPA monitoring wells, surface casing with invert mud, surface casing without invert mud, top of primary cement with invert mud, and top of cement without invert mud. Median land surface elevation = 1636 m AMSL
Figure SI C2. Instantaneous Shut-In Pressure (ISIP) values for well stimulation with depth
Figure SI D1. Organic compounds (volatile and semivolatile analyses) detected by EPA ³⁰ in produced water at Tribal Pavillion 14-10 (PGPP01), Tribal Pavillion 33-10 (PGPP05) and Tribal Pavillion 14-02 (PGPP06) and

product present with water at Tribal Pavillion 24-02 (PGPP04P). Triethylene glycol was a tentatively identified compound (gas chromatography area at least 10% as large as the area of the nearest internal standard and a mass spectrometry match quality greater than 90%)
Figure SI E1. Well schematic for MW01 modified from EPA ²⁷
Figure SI E2. Well schematic for MW02 modified from EPA ²⁷
Figure SI E3. Illustration of purging and sampling sequence (date and times provided) at MW02 for Phase V sampling event. Vertical scale reflects relative lengths of screen, casing, and water levels: (a) Pre-purge condition. Dark gray color denotes water stored in submersible pump casing remaining from the Phase IV sampling event. Mustard colored water denotes water in casing from recovery following the Phase IV sampling event and targeted for removal during the first sample set. Light gray colored water denotes stored casing water from recovery during Phase III and IV sampling events. (b) Water is removed (170L or 45 gal) from the submersible pump casing, replaced with water from above the pump inlet, and sampled. (c) Water above pump inlet is removed (964 L or 255 gal). (d) Recovery occurs (132 L or 35 gallons). Light blue color indicates mixing of water initially present in the screened interval with incoming formation water. (e) Water above pump inlet removed (491 L or 130 gal) from casing. (f) Recovery occurs (167 L or 44 gallons) with further mixing of water in the screened interval. (g) Water above pump inlet removed (215 L or 57 gal). (h) Recovery occurs (189 L or 50 gal) with further mixing of water in the screened interval. (i) Water in submersible pump casing is removed (165 L or 45 gal) and replaced with mixed casing/formation water. (j) Mixed casing/formation water is sampled. Total volume of water removed during the Phase V sampling event prior to collection of the second sample was 2011 L or 532 gal equivalent to 1.04 borehole volumes.
Figure SI E4. Plug flow - screen mixing model to support evaluation of purging: (a) Prior to purging, the concentration of a solute in the screened interval (and surrounding borehole) and overlying casing is equal to an initial value C_0 and a constant concentration C_C respectively. (b) During drawdown at commencement of purging, both downward and upward plug flow is assumed in casing above and below a pump inlet, respectively. Radial flow occurs from the surrounding formation with subsequent mixing of formation water and water initially in the borehole and screen. (c) As drawdown stabilizes, all of the water entering the pump inlet is directly from the formation. (d) Water level recovery is allowed to occur to ensure that all water entering the inlet is directly from the formation in the event of slight water level perturbation during pumping
Figure SI E5. Trends in pH and specific conductance during purging at MW01 during Phase III, IV, and V sampling events as a function of purge volume and borehole volumes (1 borehole volume ~ 1500 L). Times of sample collection illustrated by straight bars
Figure SI E6. (a) Observed decrease in pH (in mmoles/L) and specific conductance during purging as a function of time during the Phase V sampling event in MW01. Increase in casing volumes (up to 3.8), borehole volumes (up to 3.4), and screen exchanges (up to 26), and EPA sample collection times (approximately 30 minutes in duration) illustrated. Simulation of fraction of store casing water in sample train $(0.003\%$ at first sample collection), sample train (C_P) / formation (C_F) concentration ratios as a function of initial screen C_0 and casing C_C /formation (C_F) concentration ratios using a casing plug flow – screen mixing wellbore process model illustrated. (b) Rise in water level in well casing as a result of reduced pumping rate in MW01 during Phase V sampling
Figure SI E7. (a) Box and whisker plots of minimum, quartiles, median (line), mean (cross), and maximum values of pH of domestic wells (PGDWXX) greater than 1 km from a production well, domestic wells less than 1 km from a production wells, MW01, MW02, produced water, and Bradenhead water samples. Mean values are represented for domestic well locations sampled more than once. Produced water and bradenhead locations were sampled once. Measurement at MW01 and MW02 represent samples collected during Phase III, IV, and V sample events to illustrate variability. (b) pH levels in domestic wells (PGDWXX) less than and greater than 1 km of a production well (red and blue respectively) and monitoring wells as a function of absolute mean seal level (AMSL). All data points are illustrated for locations sampled more than once
Figure SI E8. (a) Box and whisker plots of minimum, quartiles, median (line), mean (cross), and maximum values of Ca of domestic wells (PGDWXX) greater than 1 km from a production well, domestic wells less than 1 km from

a production wells, MW01, MW02, produced water, and Bradenhead water samples. Mean values are represented for domestic well locations sampled more than once. Produced water and bradenhead locations were sampled once. Measurement at MW01 and MW02 represent samples collected during Phase III, IV, and V sample events to illustrate variability. (b) Ca levels in domestic wells (PGDWXX) less than and greater than 1 km of a production well (red and blue respectively) and monitoring wells as a function of absolute mean seal level (AMSL). All data points are illustrated for locations sampled more than once
Figure SI E9. Photograph of foam in YSI flow cell during purging at MW01
Figure SI E10. Potassium as a function of calcium concentration for domestic wells (PGDWXX) less than and greater than 1 km of a production well, monitoring wells MW01 and MW02, production wells, and bradenhead samples. Mean values are represented for domestic well locations sampled more than once. Produced water and bradenhead locations were sampled once. Measurement at MW01 and MW02 represent samples collected during Phase III, IV, and V sample events to illustrate variability
Figure SI E11. (a) Potassium concentration and (b) potassium/calcium concentration ratios for domestic wells (PGDWXX) less than and greater than 1 km of a production well, monitoring wells MW01 and MW02, production wells, and bradenhead samples as a function of absolute mean sea level (AMSL). Domestic wells are identified when sampled more than once.
Figure SI E12. Concentration variation of a) potassium (K), calcium (Ca), silicon (Si), dissolved inorganic carbon (DIC), chloride (Cl), and fluoride (F); (b) sodium (Na) and sulfate (SO4); and (c) Strontium (Sr), magnesium (Mg), boron (B), and aluminum (Al) during purging at MW01 as a function of borehole volume during Phase III, IV, and V sampling events.
Figure SI E13. Concentration of diethylene glycol (DEG) and triethylene glycol (TEG), as a function of borehole volume during Phase III and IV sampling events and while purging during the Phase V sampling event. Concentrations of gasoline range organics (GRO), diesel range organics (DRO), phenol, and isopropanol included for comparison.
Figure SI F1. Chromatograms of DRO analysis at (a) PGDW05 during Phase V sampling event, and (b) PGDW30 during Phase I sampling event. Handwritten note, "Early Diesel", by EPA Region 8 chemist119
Figure SI F2. Chromatograms of DRO analysis at PGDW20 during Phase I sampling event (a) aqueous sample and (b) carbon trap sample. Handwritten note, "Back End of Crude Oil" by EPA Region 8 analytical chemist. During the Phase (I) sampling event, water was circulated through a carbon trap for 24 hours (cumulative water approximately 2,950 L) with detection of DRO at 377 μg/L (EPA 2009)

A - Regional and Local Geology

A.1 Structural Geology

The Pavillion Field is located in the west-central portion of the Wind River Basin (WRB) (Figure SI A1). The WRB is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland (an elongate north-south structural depression flooded by a broad epicontinental sea referred to as the Western Interior Seaway) during the Laramide orogeny^{1,2} (Late Cretaceous through early Eocene). The WRB is fault-bounded by Laramide uplifts with Washakie Range, Owl Creek Mountains, and southern Bighorn Mountains to the north, the Wind River Range to the west, the Granite Mountains to the south, and Casper arch to the east¹⁻⁴ (Figure SI A1).

Igneous and metamorphic rocks of Precambrian age comprise the core of the mountain ranges and underlie sedimentary rocks within the basin. Rocks from all geologic periods except Silurian age are present in the basin^{5,6}. Sedimentary strata dip 10°- 20° along the south and west margins of the WRB and are commonly vertical to overturned in the north and east margins of the WRB resulting in marked asymmetry with the deepest portion of the of the basin on the north and eastern margins³. The center part of the basin is filled with nearly horizontal fluvial and lacustrine Quaternary and Cenozoic Tertiary age sediment, overlying Paleozoic and Mesozoic age rocks. Surface deposits in the basin interior where the Pavillion field lies consists of Quaternary alluvium and coalluvum and lower Eocene rocks of the Wind River Formation³ in which over 1520 m of basin-fill strata was removed by post-lower Eocene erosion⁴. In the Pavillion area, the thicknesses of colluvial-alluvial deposits can be 6 m or more⁷.

Oil and gas wells in the WRB are generally associated with anticlines or more subtle closures, however, controls on confinement cannot be discerned for some basin-centered gas accumulations⁸. The Pavillion Field is situated on a structural closure that lies on the hanging wall of Circle Ridge/Maverick Springs thrust fault – one of three major northwest-trending thrust fault systems transecting the WRB^{3,9} (Figure SI A1). There is no publicly available information on the precise location of this fault in the Pavillion field. However, it appears to lie along the western portion of the field¹⁰.

Figure SI A1. Boundaries of the Wind River Basin, identification of major faults, and the approximate location of the Pavillion Field (red square). Figure was modified from Nelson and Kibler⁸.

A.2 Identification of Source Rocks and Hydrocarbon Migration

Hydrocarbon production from the Pavillion Field is primarily gas from the Paleocene Fort Union and overlying Early Eocene Wind River Formation. However, oil has also been produced from a number of production wells in these formations, especially in western portion of the field in proximity to the suspected location of a fault. Source rocks for gas generation consist of marine rocks deposited from Early to Late Cretaceous time (~105-80 Ma) including the Thermopolis Shale, Mowry Shale, Belle Fourche Member of the Frontier Formation, and Cody Shale and non-marine source rocks deposited from Late Cretaceous to Paleocene time (~82-55 Ma) including coal and carbonaceous shale from the Mesaverde, Meeteetse, and lower member of the Fort Union Formation³ (Figure SI A2).

The source rock for oil production in the Pavillion Field is not explicitly identified in the literature. Oil was generated by source rocks in the Mowry Shale and lower shaly member of the Cody Shale throughout most of the deep basin but present day thermal maturities are too high for oil to be preserved in these source rocks except in marginal areas of the basin³. Oil generated by these source rocks may have migrated into shallow reservoirs but evidence is lacking³. The Waltman Shale Member of the Fort Union Formation is oil prone but absent at the Pavillion field^{4,8} or at its western boundary¹¹.

Light hydrocarbons from the Fort Union and Wind River Formations are isotopically similar and "dry." For example, methane (C_1) , $\delta^{13}C_1 = -38.04$ to -39.24‰ in Fort Union formation and $\delta^{13}C_1 = -39.24$ to -40.20‰ in Wind River Formation. The ratio of methane/methane to pentane $(C_1/C_{1-5}) = 0.95$ to 0.96 in Fort Union Formation and $C_1/C_{1-5} = 0.95$ and 0.96 in the Wind River Formation^{12,13}. The high level of thermal maturity of light hydrocarbons is incompatible with gas generation from these formations indicating extensive upward vertical migration from underlying mature and post-mature Upper Cretaceous source rocks¹³. Thermal maturities of coal beds in Fort Union are low indicating that any gas present is either of biogenic origin or is migrated thermogenic gas³.

In the Pavillion Field, light hydrocarbons are believed to have migrated and commingled in faulted and highly fractured zones along anticlines and structural noses^{3,13-15}. Light hydrocarbons migrated to the base of the Waltman Shale Member³ east of the Pavillion Field, and to Eocene Wind River Formation west of the pinchout of the Waltman Shale^{12,13} where the Pavillion field is present. As uplift and erosion proceeded in the Wind River Basin, ground water produced an alteration zone where microbial activity generated biogenic methane from source rocks and degraded ethane in preexisting gas accumulations³. Biodegradation of ethane has occurred at the Pavillion and East Riverton dome fields¹⁴.

Figure SI A2. Generalized stratigraphic columns and correlations of Pennsylvanian through Eocene strata in the Wind River Basin, Wyoming. The Pavillion Field is located in the western portion of the Wind River Basin. From Johnson et al.³

Gas trapping in the Wind River and Fort Union Formations in the Pavillion field occurs in localized stratigraphic sandstone pinchouts on the crest and along flanks of a broad structural dome^{9,10,16}. A decrease in fracturing away from the crest of a fold rather than loss of gas saturation largely may control economic gas production³. During early development of the Pavillion field, Upper Cretaceous and Tertiary rocks were normally pressured (hydrostatic gradient) and had a low temperature gradient of 1.2°F/100 ft⁸. Cumulative water to gas ratios, measured in barrels (bbls) (1 bbl = 42 gallons = 159 liters) to million cubic feet (MMCF), for targeted production intervals in the Wind River and Fort Union are considered relatively low at 0.9 bbl/MMCF (n=84) and 2.4 bbl/MMCF (n=66), respectively⁸.

A.3 Lithology of the Fort Union Formation

The Fort Union Formation is divided into two general lithologic units. The lower unnamed member is characterized by conglomerates, white to gray fine- to coarse-grained, massive to cross-bedded standstone, interbedded with dark gray to black shale, claystone, and siltstone deposited under various fluvial depositional systems^{3,17-19}. The upper unit is divided into two laterally equivalent members – the Waltman Shale and the Shotgun members²⁰. The Waltman Shale is a lacustrine deposit in the central portion of the WRB that formed from an extensive body of water that developed in the basin during late Paleocene time¹¹. The Waltman Shale is absent or at its western boundary at the Pavillion field^{4,8,11}.

The Shotgun Member is a marginal lacustrine deposit that formed in fluvial and shoreline areas that expanded during the late Paleocene²⁰ and is dominated by siltstones, mudstones, carbonæeous shales, coals, and subordinated sandstones¹⁸. The Shotgun Member directly overlies and lithologically merges with the lower member in areas where the Waltman shale is absent^{11,19}. The thickness of the Fort Union is relatively unaffected by upwarping and downwarping indicating that downfolding occurred after deposition of the formation. Conglomerates and sandstones of the lower member of the Fort Union were initially targeted as producing zones in the Pavillion Field¹⁸.

Based on gamma ray, resistivity, and combined gamma ray-resistivity logs, Flores and Keighin¹⁸ identified four fluvial depositional systems in the lower member of the Fort Union Formation in the Pavillion Field. Type I reservoirs were characterized as stacked sandstone (up to ~ 18 m thick) with internal scours marked by lag conglomerates formed by low sinuosity side and mid-channel bars. Type II reservoirs were characterized as multistory sandstones (~4 to ~ 9 m thick) separated by siltstone and mudstone seal rocks (~1 to ~6 m thick) formed by low sinuosity cut and fill channels. Type III reservoirs were characterized as multistory sandstones (~2 to ~ 14 m thick) interbedded with siltstones and mudstones (~2 to ~12 m thick) formed by high sinuosity meander channels. Type IV reservoirs were

characterized as sandstones (up to ~ 6 m thick) within mudstones and siltstones formed by crevasse splays.

A.4 Lithology of the Wind River Formation

Fluvial deposition of the Wind River Formation occurred during a time of intense folding and uplift during the later stages of the Laramide orogeny^{6,11,20,21} resulting in considerable lithological variation of the formation throughout the WRB²⁰. Thickness of the Wind River Formation in the basin varies from 0 to about 1524 m⁶. Information from well completion reports and drilling logs indicates that in the Pavillion Field, thickness of the Wind River Formation ranges from 853 to 1228 m. The underlying Paleocene Fort Union Formation ranges in thickness from 762 to 914 m in the area¹⁸.

Keefer^{19,20} stated that, in general, two facies predominate in the Wind River Formation throughout the WRB – a coarse boulder facies representative of deposition along mountain slopes and a fine-grained commonly brightly varicolored facies representative of deposition farther out in the basin with gradation of these two facies in overlapping mountain and basin areas. However, depending on the transport power of ancient streams, coarse grained sandstone and conglomerate extend several miles in to the basin in channel deposits.

McGreevy et al.⁶ stated that in the Wind River Indian Reservation (WRIR) (an area directly west of the Pavillion Field), oil well logs and test drilling indicated: (1) an upper fine-grained sequence at the surface in most of the eastern part of the reservation consisting primarily of gray and green siltstone, shale, and sandstone with numerous sheet and channel deposits of brown siltstone and sandstone with a maximum thickness of about 244 m in most of the area; (2) a sequence containing many coarse-grained, well sorted, loosely cemented, very porous, largely arkostic sandstone and conglomerated beds of thickness of ~ 305 m but thinning to the northeast part of the WRIR; and (3) a lower sequence consisting of fine-grained brown, maroon, red, and gray siltstone and shale with some sandstone of thickness of several thousand feet which intertongues with the coarse-grained sequence toward the south end of the WRIR.

A continuous sandstone unit, termed the Basal Wind River unit, lies at the base of the Wind River Formation in the Pavillion Field^{9,10}. This unit appears frequently in drilling and well completion reports. The continuity of this unit contrasts with substantial vertical and lateral stratigraphic variation in sandstone units over short distances in the Pavillion area^{9,10} and throughout the Wind River Formation in general^{18,22} precluding mapping of these units using conventional borehole log techniques. Sandstone units are generally characterized as lenticular, discontinuous, and separated by confining shale, mudstone, and siltstone units⁶.

Sandstone lenses in the Wind River Formation in the Pavillion field are reported to be generally fine to very fine grained, well sorted, have porosity in the range of 4 to 28 percent and permeability in the range of 0.1 to 300 millidarcies (md)⁹. Referring to development in 14 gas wells and 8 dry holes in the Wind River and Fort Union Formations, Single⁹ stated that on average 75 sandstone units (varying in thickness between ~1 to 21 m) were penetrated in each well of which 6 to 20 units were gas productive and the remaining had limited porosity and/or permeability, or were "water bearing". Drilling in the Pavillion field is complicated by the presence of water sensitive shales and petrophysical evaluation is complicated due to the presence of fresh water and pore-filling clays⁹.

The central part of the basin, is characterized by stream-valley fill and broad flood plains and that the presence of large quantities of overbank mudstones and near linear channel-sandstone ridges suggest that meandering streams of low sinuosity were dominant during deposition of the Wind River Formation²¹. The Eocene Wind River appears to have flowed directly through an area that is now the Pavillion Field in the vicinity of production well Tribal Unit 14X-11²¹. Maximum intervals of continuous sandstone deposits are greatest near the course of the Eocene Wind River where channel sandstone bodies can be as much as 40 meters thick, but most are much thinner²¹.

A.5 Lysite and Lost Cabin Members of the Wind River Formation

In the eastern and northeastern margins of the WRB (north and east of the Pavillion field), the Wind River Formation has been divided into the Lysite and overlying Lost Cabin Member based on lithological and faunal differences^{19,20}. Faunal distinction was largely based on the presence of the genus *Lambdotherium* in the Lost Cabin beds and its absence in Lysite beds²⁰. In the northeastern portion of the WRB, the Lysite Member consists of yellow to brown sandstone and conglomerate interbedded with red, gray, and greenish-gray sandy claystone and siltstone²⁰. The Lost Cabin Member consists of gray, yellow, and brown sandstone with locally prominent beds of conglomerate alternating with violet, red, purple, gray, and green sandy clayey sandstone²⁰. Both members contain an abundance of fine-grained strata¹⁹.

One of the primary differences between these two members is the composition of conglomerates. Conglomerate in the Lost Cabin Member contains abundant Precambrian rock fragments of granite and gneiss¹⁹. Conglomerate in the Lysite Member is derived almost exclusively from Paleozoic formations¹⁹ and contains an abundance of limestone, dolomite, and chert fragments²⁰. In the central part of the WRB (where the Pavillion Field is located), there is no sample or electric log basis to separate the Wind River Formation into Lysite and Lost Cabin Members²⁰. Throughout the WRB, the name Wind River Formation is applied to all lower Eocene rocks, including the Indian Meadows Formation and the Lost Cabin and Lysite Members of the Wind River Formation because there are no viable criteria for distinguishing individual members of the Wind River Formation from sample and well log data^{11,19,20}.

Stephens²³ and Itasca Denver Inc.²⁴ state that the Wind River Formation in the Pavillion field can be divided into the Lost Cabin member and underlying Lysite member and that the former is a source of potable water while the later has total dissolved solids (TDS) levels exceeding 10,000 mg/L. They state that EPA's monitoring well MW01 was completed in the Lower Lost Cabin member, and MW02 was completed in the Upper Lysite Member where elevated chloride was detected. However, neither Stephens²³ nor Itasca Denver Inc.²⁴ provide any justification (e.g., faunal or lithologic) for identification of these units outside established geographic areas in the WRB.

In available lithologic logs in the Pavillion Field limestone and dolomite fragments characteristic of the Lysite member were not identified at Tribal 1-21, Tribal 1-22, Taylor Patented 1, Shell 33X-10, Mae H. Rhodes 1, Runners Herford 1, Roland Patented 34-13, Ocean Lake Tribal 1-15, John K. Coolidge 1-4, Unit 12-3, Govt Ocean Lake 1, Doles Unit 44-15, Tribal 21-9, and Tribal Pavillion 14-2 at or below the depth of MW02. Chert fragments were identified at 856 m below ground surface (bgs) at Shell 33X-10 and at 1036 m bgs at Taylor Patented 1.

Also, neither Stephens²³ nor Itasca Denver Inc.²⁴ provide references or documentation that, even where present, the Lysite member contains TDS levels exceeding 10,000 mg/L. In an evaluation of alternative water supply options for residents in the Pavillion field, Gores and Associates²⁵ identified three domestic wells of similar depth of MW02 in the immediate vicinity of the Pavillion field at 274, 305, and 322 m bgs with associated TDS concentrations of 631, 590 (775 duplicate), and 607 mg/L TDS respectively. Also, USGS reports (McGreevy et al.⁶, Plafcan et al.²⁶, and Daddow et al.⁵) relevant to the Pavillion area indicate no instance of TDS levels exceeding 10,000 mg/L in the Wind River Formation. Plafcan et al.²⁶ identified a water supply well at 674 m bgs having a TDS concentration of 1190 mg/L. A.6 EPA Lithologic Cross-Section through Pavillion Field

159

160 161

162

163

164

165

166

167

168 169

170

171

172

173

174

175

176

177 178

179 180

181

182

183

184

185 186

187

188

189 190

191

EPA (DiGiulio et al.²⁷) used borehole geophysical logs from 32 production wells to develop a lithologic cross-section in the vicinity of MW01 and MW02. Depending upon the specific production well, various combinations of natural gamma, resistivity, self-potential, density, and neutron porosity logs were utilized. No gradational/intermediate values between shale and sandstone (e.g. 80% shale, 20% sandstone) were used although they are known to exist throughout the Wind River Formation. This designation was maintained for consistency for near surface deposits where fine-, medium-, and coarsegrained sandstones could be differentiated from driller's logs. It was generally clear from the various logs whether a specific interval contained sandstone or shale, but not where each layer started or ended. Thus, assignment of boundaries was subjective. Each sandstone or shale layer was represented as having at least one meter in thickness since log resolution was insufficient to discern individual layers less than this resolution.

Data was used to populate a three-dimensional lithology model using a commercial software package Rockware15. A lithologic cross-section (Figure SI A4) developed along a transect (Figure SI A3) represents a slice taken through this 3D model. In general, lithology was highly variable and difficult to correlate from borehole to borehole, even for boreholes in close proximity to one another consistent with the experience of others (e.g., Osiensky et al.²²). However, it is apparent that there are no laterally continuous confining layers above depths of well stimulation (Figure SI A4). Since the majority of geophysical logs from the oil and gas wells were run after installation of surface casing, the shallow lithology structure (upper 150-200 meters) in the model was dominated by information from the two EPA installed monitoring wells. Thus, the apparent existence of continuous shale units near the surface may be a result of insufficient data rather than physical reality.

The aspect ratio (length versus width) of sandstone lenses cannot be discerned from available data. Itasca Denver Inc.²⁴ used exposures from Upper Jurassic Salt Wash Sandstone Member of the Morrison Formation in the Henry Mountains area of southern Utah investigated by Robinson and McCabea²⁸ to define the aspect (length versus width) ratios of sandstone bodies in the Paleocene Fort Union and Eocene Wind River Formations. Justification for this comparison was not provided.

Figure SI A3. Map illustrating transect used to develop a lithologic cross section across the Pavillion Field. From EPA²⁷

Figure SI A4. Lithologic cross-section along transect illustrating undifferentiated sandstone and shale units. From EPA²⁷

Figure SI A5. Pavillion Field plot illustrating locations of production wells, domestic wells, EPA monitoring wells (MW01 and MW02), and unlined pits. Domestic wells sampled by EPA identified by last two digits of PGDWXX series. Unsampled domestic wells having a Wyoming State Engineer's Office (SEO) permit number identified with the prefix "P." Unsampled domestic wells lacking SEO permits not identified. Depths of domestic well provided in Table SI B1. Full names of production wells, abbreviated here, are provided in Table SI C1. Locations of unlined pits are approximated by locations of associated production wells.

B – Locations, Depths, and Major Ion Concentrations of Domestic Wells in and Around the Pavillion Field

 Table SI B1. Location and depth of domestic wells in and surrounding the Pavillion well field. State Engineers Office (SEO) permit provided when available. PGDW01 and PG DW02 are municipal wells PGPW01 and PGPW02. Information compiled from EPA²⁷, EPA^{29,30}, Wyoming Oil and Gas Conservation Commission (WOGC C)^{31,32}and Gores and Associates²⁵

Associates ²⁵						
SEO Permit Number	EPA Well Identification	Latitude	Longitude	Ground Elevation (m AMSL)	Well Depth (m bgs)	Completion Date
?	PGPW01/PGDW07 4	3.24678802 -108	6879349 1666.0		154.2 ?	
?	PGPW02/PGDW08 4.				157.0 ?	
?	PGDW01	43.2185	-108.5783	1610.0	?	?
?	PGDW02		08.5783117 1629		15.2	?
?	PGDW03		08.6584107 1629		137.2 ?	
?	PGDW04		08.6541901 1638		134.1 ?	
P32161.0W	PGDW05		08.6126556 1632		64.0	02/02/1976
?	PGDW06		08.5599211 1663		115.8 ?	0
?	PGDW09		08.615144 1635.6		9.1	?
?	PGDW10		8.6565018 1633.′ 08.6228628 1636		225.6 ?	?
?	PGDW11 PGDW12		08.5661502 1652		115.8 ?	
?	PGDW12		08.5001302 1032 08.6772771 1642.0		?	?
No permit on file PC		43.25154027 -		642.3	57.9	?
?	PGDW15		08.6671791 1606		30.5	?
?	PGDW16		08.6405183 1610		164.6 ?	•
?	PGDW17		08.6368713 1615		152.4 ?	
?	PGDW18		08.569651 1612.7	7	67.1	?
?	PGDW19		08.651274 1622.1		19.8	?
No permit on file PC	DW20	43.25230026 -	08.5915756 1	624.0	140.2 ?	
No permit on file LE	-02	43.25437	-108.58919	1623.0	185.9 ?	
?	PGDW22	43.2444191 -10	8.598175 1627.0		?	?
P24508.0P	PGDW23		8.6225891 1656.9		53.3	12/31/1964
?	PGDW24		08.6015059 1622		30.5	?
?	PGDW25		08.5694867 1643		24.4	?
?	PGDW26		08.6132115 1649		19.8	?
?	PGDW28		08.6465688 1612		25.9	?
?	PGDW29		08.6288449 1634		121.9 ?	0
No permit on file PC	PGDW31	43.25753	-108.62258 08.6615302 1624	1637.1	79.2	?
P64110.0W	PGDW31 PGDW32		08.5941391 1624		205.7 5/2	
P22662.0P	PGDW32		08.5964146 1626		9.1	12/31/1934
?	PGDW34		08.6058086 1634		30.5	?
?	PGDW35		08.6241763 1630		88.4	?
?	PGDW36		08.5987059 1641		30.5	?
?	PGDW37		08.6585376 1615		24.4	?
?	PGDW38	43.2296203 -10	8.572037 1610.9		48.8	?
?	PGDW39	43.23750687 -	08.5781708 1615	.4	17.4	?
?	PGDW40		08.6198273 1638		67.1	?
P66345.0W	PGDW41	43.262146	-108.6378479 16		21.3	1/31/1984
P41517.0W	PGDW42	43.25574493 -			61.0	11/29/1977
?	PGDW43	43.25749207 -		1645.0	?	?
P24506.0P	PGDW44		08.6261292 1645		228.6 12/	
No permit on file PC		43.25888062 -		632.5	30.5	?
?	PGDW46 PGDW47		08.6157684 1638 08.6319885 1641		14.6	?
?	PGDW4/ PGDW48		08.6319885 1641 08.6235733 1633.1	.3	147.5 ?	
No permit on file PC		43.2299881 -10		637.7	15.8 ?	?
P166481.0W	PGDW50	43.2453	-108.6085	1633.1	61.0	4/7/2005
CR UW09/250	None	43.25114	-108.56899	1614.4	?	8/19/1977
P108128.0W	None	43.23104	-108.62085	1626.1	115.5 11/	
P120203.0W	None	43.22725	-108.66048	1628.2	137.2 11/	
P123668.0W	None	43.27042	-108.61556	1638.9	18.3	3/6/2000
P124049.0W	None	43.24552	-108.63087	1639.2	147.5 3/	6/2000
P146856.0W	None	43.23104	-108.62085	1626.1	115.8 9	/5/2002
P164192.0W	None	43.26372	-108.5862	1649.0	24.4	12/6/2004
P164193.0W	None	43.26653	-108.589	1654.1	30.5	12/6/2004

SEO Permit Number	EPA Well Identification	Latitude	Longitude	Ground Elevation (m AMSL)	Well Depth (m bgs)	Completion Date
P164194.0W	None	43.26658	-108.5856	1654.1	31.2	12/6/2004
P166480.0W	None	43.24909	-108.6163	1633.1	?	4/7/2005
P172899.0W P183041.0W	None None	43.26029 43.21207	-108.60075 -108.47977	1631.0 1567.9	30.5 73.2	10/19/2005 8/1/2007
P197335.0W	None	43.27103	-108.47977	1645.9	?	1/27/2012
P197336.0W	None	43.27115	-108.62854	1645.9	?	1/27/2012
P200885.0W	None	43.24642	-108.61915	1657.0	?	8/16/2013
P22660.0P	None	43.24208	-108.59609	1624.9	53.3	9/30/1938
P22661.0P	None	43.24212	-108.5911	1622.1	14.6	8/31/1947
P22662.0P P23056.0P	None None	43.23844 43.22725	-108.59611 -108.66048	1625.5 1628.2	9.1 19.8	12/31/1934 1/4/1960
P24502.0P	None	43.23248	-108.60418	1628.9	54.9	12/31/1942
P24506.0P	None	43.24918	-108.62593	1658.4	228.6 12	/31/1932
P24508.0P	None	43.2492	-108.62099	1637.1	53.3	12/31/1964
P29496.0P	None	43.24198	-108.61107	1633.1	39.6	3/31/1975
P30217.0W	None	43.24311	-108.62275	1633.1	106.7 6/	18/1975
P31805.0W P34936.0W	None None	43.24562 43.24311	-108.61107 -108.62275	1633.1 1633.1	30.5 106.7 9/	1/20/1976 14/1976
P34936.0W P41320.0W	None None	43.24311	-108.62275 -108.60608	1633.1	30.5	14/19/6
P41517.0W	None	43.25628	-108.6507	1644.1	61.0	11/29/1977
P44255.0W	None	43.24201	-108.60608	1642.9	68.6	7/18/1978
P50375.0W	None	43.24216	-108.58612	1618.0	30.5	10/15/1979
P59499.0W	None	43.23471	-108.611	1622.1	33.5	2/3/1982
P60032.0W	None	43.2348	-108.59614	1618.0	26.2	3/23/1982
P65111.0W P66345.0W	None None	43.23078 43.26365	-108.67048 -108.6358	1645.0 1642.9	27.4	8/3/1983 1/31/1984
P69549.0W	None	43.24562	-108.6338	1633.1	30.5	2/25/1985
P82257.0W	None	43.21668	-108.48244	1571.8	91.4	4/20/1990
P89840.0W	None	43.26343	-108.62097	1639.5	65.5	9/17/1992
P91293.0W	None	43.24195	-108.61606	1631.0	3.0	4/5/1993
P9334.0P	None	43.21429	-108.54506	1625.5	6.1	12/31/1935
P93498.0W P9441.0P	None None	43.21668 43.20178	-108.48244 -108.68044	1571.8 1634.9	69.5 177.4 1/1	11/15/1993 /1944
P95171.0W	None	43.23078	-108.67048	1645.0	25.9	5/9/1994
P99671.0W	None	43.24201	-108.60608	1643.0	16.7	6/28/1995
P14914P	None	?	?	?	39.6	?
P98757W	None	?	?	1670.0	156.1	?
P58929W	None	?	?	1652.0	17.4	?
P34345W P59104W	None None	?	?	1667.9 1667.9	150.9 152.4 ?	?
P24507P	None	?	?	1647.1	228.6 ?	
P97501W	None	?	?	1624.0	?	?
P30217W	None	?	?	?	106.7 ?	
P182983W	None	?	?	1638.6	231.6 ?	0
P46362W	None	?	?	1642.3	54.9	?
P62641W P53567W	None None	?	?	1662.7 1652.0	208.8 ? 42.7	?
P25636W	None	?	?	1632.0	12.5	?
P110443	None	?	?	1633.7	127.1 ?	
P28496W	None	?	?	1613.3	11.0	?
P26200W	None	?	?	1603.2	88.4	?
P40603W	None	?	?	1619.1	12.2 97.5	?
P76475W P14548P	None None	?	?	1621.5 1615.4	18.3	?
P30162W	None	?	?	1645.9	61.0	?
P32163W	None	?	?	1639.8	114.3 ?	
P9941P	None	?	?	1637.1	177.4 ?	
P116598W	None	?	?	1629.8	143.3 ?	
P25011W P177246W	None	?	?	1627.6 1611.5	88.4	?
P17/246W P190223W	None None	?	?	1611.5	304.8 ? 321.6 ?	
P191733W	None	?	?	1606.9	274.3 ?	
Unidentified (16	None	?	?	?	?	?
domestic wells)						

Table SI B2. Major ion concentrations of domestic wells. Note: Results of samples collected by Wyoming Department of Environmental Quality (WYDEQ)³⁴ obtained by the Powder River Basin Resource Council (PRBRC) through a Freedom of Information Act Request to the State of Wyoming

Well Name			SC (µS/cm)	linity .) O3)	Na (mg/L)	g/L)	Ca (mg/L)	Mg (mg/L)	ıg/L)	lg/L)	SO4 (mg/L)	yL)	N) (1)	g/L)	TDS (mg/L)	
Well	Date	pH	SC (µ	Alkalinity (mg/L)	Na (n	K (mg/L.)	Ca (n	Mg (r	Br (mg/L)	Cl (mg/L)	SO4 (F (mg/L)	NO ₃ (N) (mg/L)	Fe (mg/L)	LDS	Source
PGDW05	Mar-09 9			93.3 192		0.286 3.6	0.127 N	M		17.0 29		0.9	<0.5	0.187		EPA ²⁹
	Jan-10 8.	22 900		88.4 189 80 91 92 97	}	<5.0 0.24	3.33 <: 3.35 0. 3.17 0.	5.0	NM	16.5 2 16.8 2 5.8	87	0.9 1.2	<0.3 <0.014 0. 0.02 <0.005 <0	0.0666		EPA ³⁰
ļ	Apr-11 9	06 820		80	190	0.24	3.35 0.	08	NM <1.00 10 0.093 19	16.8 2	76	1.2	<0.014 0.	124		EPA ²⁷
	Apr-12 9 Jun-14 9.	30 837		91	190 220	0.47 <0.1	3.17 0.	07	<1.00 10).8 	308	0.90 1.0	0.02	<0.03		EPA ³³
ļ	Jun-14 9.	29 8 / 8		92	170	<0.1 0.37	3.4 <0. 3.5 0.1		0.093 19	r	310	0.92	<0.005 <0 <0.005 0.).1 02.4	560 W 560 W	YDEQ 34
PGDW06	Aug-14 9 Mar-09 1			34.9 249	1/0	0.344 7.1	1 0.0342	1	NM	31.0 48		1.3	<0.003 0.	NM	360 W	EPA ²⁹
PGDW09	Mar-09 8			254	233	2.05	16.6 4.	14	NM	10.5 2		2.4	3.2	NM		EPA ²⁹
PGDW11	Mar-09 7			312	423	5.53	363 80		NM		780 0.2	2.7	1.3	NM		EPA ²⁹
PGDW12	Mar-09 1			37.1 250		0.567 7.7			NM	30.8 49		1.5	<0.5	0.695		EPA ²⁹
PGDW14	Mar-09 7			159		4.51	154 18	.1	NM NM 0.29 29 <0.15 28				0.7	NM		EPA ²⁹
	Apr-11 7.	73 3473		156	690 753 820	4.51 3.52 3.5 4.4	154 18	.6	NM	26.1 18 23.7 1	60 <0	.05 0.36		NM <0.019 <0.1 <0.1		EPA ²⁷
	Jun-14 7.	65 3920		160	820	3.5	170 19		0.29 29		2000 <	0.40 0.4	4	< 0.1	2930 V	VYDEQ ³⁴
[Aug-14 7	.62 4110		160	700	4.4	140 18		< 0.15 28	}	1900	0.25	0.38	<0.1	2910 V	YYDEQ ³⁴
PGDW20	Mar-09 8	76 2005		70.2 520)	1.01	79.3 9.	33	NM	34.5 13	70 0.8		< 0.5	0.0342		EPA ²⁹
[Jan-10 8.	89 2690		67.9 550	}	< 5.0	71.7 8.	14	NM	32.6	1270 0.8		< 0.3	0.300		EPA ³⁰
	Oct-10 8.	85 2940		54 102	562 520	1.05	71.9 8.	12	NM	33	1320 0.9	0	0.35 <0.03 0.1 0.073 <0.	0.221		EPA ²⁷
	Apr-11 8	59 2430		102	520	0.780 63		6.86	NM <1.00 32	22.9 1	50 1.3		< 0.03 0.1	37 		EPA ²⁷
	Apr-12 8. Jun-14 8.	89 2429		66	491 630	1.64	57.9 5.	93	<1.00 32	2.3	130 0.94		0.073 < 0.	03		EPA ³³
	Jun-14 8.	84 2880		66 83 83	630	0.72	78	7.6	<0.15 3:		1300	0.92 9	<0.03 0.1	<u> </u>	1990 V	VYDEQ ³⁴
1.000	Aug-14 8			83	520	0.91	82	8	0.13 35	20.1.6	1300 0.8	2.20	<0.01 0.0	38	2050 V	VYDEQ 34
LD02	Oct-10 8. Jun-14 8.	94 11/3		18	313 680	0.57 1.8	25.2 1. 140 21	43	NM <0.15 38	20.1 69	78 1700 1	2.28 .5	<0.10 0.0 <0.25	0.079	2500 1	EPA ³⁰ VYDEQ ³⁴
			NM	78 56 62	630	1.6	130 22		<0.15 3'	}	1700 1		<0.25	0.079 0076 2560 V	ZOU	V 1DEQ
PGDW22	Aug-14 N Mar-09 6		INIVI	332	837	8.99	416 12	6	NM	79.9.2	720 < 0.2		43.6	NM	VIDEQ	EPA ²⁹
1 GD W 22	Jan-10 7.			337	908	5.83	397 13		NM	74.6 2		2	40.7	<0.1		EPA ³⁰
PGDW23 · ·	Mar-09 9			61.4.208		0.278 6.5	1 0.070 1			19.8 30		1.2	'<0'5	NM		EPA ²⁹
1.05	Jan-10 9.	72 780		54.2 194		<5.0	5.82 <		NM	19.7 3	68	1.5	<0.3	< 0.100		EPA ³⁰
	Apr-11 9.	07 959		72	208	<5.0 0.31	6.7 0.1		NM	19.9 30	55	1.6	<0.03 <0.	019		EPA ²⁷
	Apr-12 9	13 996		65	208 223 240	0.61	7.19 0.	09	NM <1.00 19	0.0	397	0.98	<0.3 <0.03 <0. 0.05 0.03	< 0.03		EDΔ33
	Jun-149.	28 1110		72 65 57	240	0.11	6.2 < 0.	5 83 0.11 21	0.14 22		400	1.5	0.03	<0.1	650 W	YDEQ 33
	Aug-14 9	.09 1040		60	200	0.37		83 0.11 21			380	1.5	<0.005 <0).0076 650 V	VYDEQ	33
PGDW24	Mar-09 7			165	938	7.02	327 13	1	NM		200 0.6		< 0.5	0.995		EPA ²⁹
PGDW25	Mar-09 8			205	249	1.05	10.9 1.		NM	8.4 353	5	4.1	<0.5	0.0517		EPA ²⁹
	Jan-10 7.			295	269	< 5.0	70.1 9.		NM	9.5 44	1	<0.2	1.7	< 0.100		EPA ³⁰
PGDW26	Mar-09 7			337	220	6.8	364 57	.7	NM	14.6 12			1.5	NM		EPA ²⁹
n on was	Apr-11 6		44=0	196	232	5.15	334 56		NM	13.2 1		0.7	1.37	<0.019		EPA ²⁷
PGDW28	Mar-09 8		1170	258	239	2.15	40.6 12		NM	16.7 29		0.5	3.7	NM		EPA ²⁹
PGDW30	Mar-09 9	0	902	95.7 210	<u> </u>	0.294 4.2	9 0.125 1	NIVI O	NIM/	16.3 33 15.5 3		0.9	<0.5 <0.3 0.23 <0.03 0.0 0.02	0.117		EPA ²⁹ EPA ³⁰
ļ	Jan-10.9. Oct-10.9.	99 96 / 04 1040		94.0.19 78.0 208 82 91		<5.0 0.2	4.05 <:	p.v. n	NM NM		33 7	0.9 1.0	.<0.5 0.23	0.0441 <0.019		EPA ²⁷
	Apr 11 0	02 03 8 02 03 8		70.0 <u>20</u> 0	210	0.29	4.3 0.1 4.5 0.0	۲	NM NM	15.2 3: 16.1 3:	}	1.0	<0.23	~0.019 42		EPA ²⁷
}	Apr-11 8. Apr-12 8.	98 954		91	213	0.29	4.42 0.	ŕ	<1.00 10	10.13.	37	1.05	0.03 0.0	< 0.03		EPA ³³
<u> </u>	Jun-14 9.			97	240	0.18	4.42 0.		0.1117	7.1 <i>J</i>	360	0.91	R	<0.03	630 W	VDEO 34
<u> </u>	Aug-14 8			96	240	0.33	4.5 0.1	ř	0.080 1	ļ	340	0.87		0.1 0.0076 640 V	VYDEO	34
	Aug-140	1040		70	∠ , 70	0.55	7.5 0.1		0.000 1	L	270	0.07	~0.005 ~(γ.υυ/υ υ 1 υ γ	FIDEQ	

										10.00)				1	
Well Name	9		SC (µS/cm)	Alkalinity (mg/L) (CaCO3)	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)	Br (mg/L)	Cl (mg/L)	SO4 (mg/L)	F (mg/L)	NO ₃ (N) (mg/L)	Fe (mg/L)	TDS (mg/L)	Source
We	Date	Ē	SC	AL C	Na	K (ű	Mg	Br	CI (os		8 E	Fe	1 2	Sor
PGDW31	Mar-09 8.6	20	006	82.5 435		0.901 31.	2 0.843	VМ		13.3 10	30 0.4		0.5	NM		EPA ²⁹
PGDW32	Mar-09 10.47			34.1 199		0.267 7.1	6 0.017	N	M	21.8 3		2.3				EPA ²⁹
	Jan-10 9.87 10			31.5 193		<5.0 0.09	6.89 <	5.0	NM	21.4	368	2.4	<0.3 <0.03 0.0	0.412 0.125 24		EPA ³⁰
	Apr-11 9 3	88	85	46	198	0.09	7.2 0.0	3	NM	18.8 3	51	2	<0.03 0.0	24		EPA^{27}
	Jun-14 9.97 11		[30 34	230	< 0.1	7.4 <0	02 < 0.03 2	4		400	2.5	-0.005 -0	7.1	620 W	YDEQ ³⁴
	Aug-14 9.88 1				190	0.42	8	0.038 0.0			380	2.3).0076 640 V	VYDEQ	34
PGDW33	Mar-09 7 77 1			276	178	4.99	228 40	.9	NM	23.0 20	590 0.2		2.1	NM 0.087		EPA ²⁹
	Jun-14 7.05 18			310	150	3.8	200 39]	< 0.03 20	}	700	0.65	3.2			VYDEQ 34
DCDW24	Aug-14 7.21 1			260	160	3	150 27	h	0.043 18	20	590	0.98	2.0	<0.0076 1	180 W YI	
PGDW34 PGDW35	Mar-09 7 87 4 Mar-09 8 63 2			373 84.0 587	786	7.4 1.09	325 11 118 1.	3	NM NM	28 24.1 10	670	0.5	3.5 0.5	NM 1.10		EPA ²⁹ EPA ²⁹
PGDW35 PGDW36	Mar-09 7.62 6			232	41.7 2.5		89.5 2	8 9	NM NM	3.2 19:	10 0.3	1.0	1.2	NM		EPA ²⁹
PGDW37	Mar-09 8 14 8			342	187	0.887 12.	1 1.3	0.7	NM	8.7 89.	909	1.0	1.2	NM		EPA ²⁹
PGDW39	Jan-10 7.79 64			129	1110 5.2		389 14	7	NM	52.9 30			<0.3	0.33		EPA ³⁰
PGDW40	Jan-10 9.06 12			86.3 244	1110 3.2	<5.0	6.57 <	5.0	NM	13.1 42		<0.2	<0.3	1.26		EPA ³⁰
PGDW41A Jur				320 .	1400 6.2		670 56		< 0.30 .	710 32	00 0.15		21	< 0.1	5840 V	VYDEO 34
	Aug-14 7.07 8	080		340	1300 5.4		580 54		<0.30 8	0 310	0 0.	7	17	0.0090 633	0 WYD	EQ 34
PGDW41	Jan-10 7.63 44	70		108	1030 2.6	8	270 57	.5	NM	31.4 20	570 0.5		< 0.3	1.88		EPA ³⁰
	Apr-11 7 05 48			112	896	3.18 4.3	452 46	.9	NM	97.6 20	54 0 <0	.05 17.5		< 0.019		EPA ²⁷
	Jun-14 7.07 52			130	980	4.3	290 55		<0.15 3	·	2800	0.44	< 0.03 0.5			VYDEQ ³³
	Aug-14 7.61 5			140	920	3.4	270 61		<0.30 34	1	2700	0.39	0.18	0.55	4220 V	VYDEQ 33
PGDW42	Jan-10 9.18 88			88.5 181		<5.0	5.06 <		NM	13.2 3	11	1.0	<0.3	0.0966		EPA ³⁰
PGDW43	Jan-10 8.19 44			113	911	<5.0	208 13		NM	38.4 24			<0.3	0.403		EPA 30
PGDW44	Jan-10 8.13 40 Apr-11 8 17 4			100 94	994 1060 2.0	<5.0	259 28 259 19		NM NM	39.5 28		.05 <0.03 2	<0.3 .06	2.07		EPA ³⁰ EPA ²⁷
	Jun-14 8.11 56			9 4	1100 2.0		290 20	} [_]	<0.15 4:		3100	0.34	<0.03 2.4		4420 V	VYDEQ ³⁴
	Aug-14 8.28 5	900		81 80	1000 2.3		250 20	}	<0.15 4.	[2900	0.22	<0.03 2.4			VYDEQ 34
PGDW45	Jan-10 7.63 11			379	59.4 2.6	1	138 31	2	NM	14.5 2	13	1.9	0.3	< 0.100	1110 1	EPA ³⁰
	Apr-11 6 85 10	085		364	.61.6 2.8	î	159 34	5	NM .	18.4 2	1.	1.7.	0.64	< 0.019		EPA ²⁷
	Jun-14 7.17 13			350	97	2.7	160 35		0.19 31		330	2.0	1.4	< 0.0076 82	0 WYD	EQ 34
	Aug-14 7.01 1	150		360	79	3	120 32		0.24 36		250	1.7	0.98	<0.0076 87 <0.0076 7	0 WYD	EQ 34
PGDW46	Jan-10 7.79 85	5		329	91.1 1.8	1	90.3 9	89	NM	8.4 120	5	0.5	2.3	< 0.100		EPA ³⁰
PGDW47	Jan-10 9.52 97			44.1 183		< 5.0	6.87 <	5.0	NM	21.6 33		1.5	< 0.3	< 0.100		EPA ³⁰
PGDW48	Jan-10 8.21 35			89.8 725		< 5.0	147 4.:	3 5	NM	24.1 18			< 0.3	0.0491		EPA ³⁰
PGDW49	Jan-10 7.66 54	70		243	1210 11		486 15		NM	64.3 3	60 0.4		7.7	11.4	<u>.</u>	EPA ³⁰
	Apr-11 7 34 53	333		243 296 330	982 990	9.66	417 12		NM	54.3 32		.05 8.75	 	2.41 0.084		EPA ²⁷
	Jun-14 7.31 58			330 310	990 960	10 11	430 14		0.20 68 0.19 61		3500 0 3300 0	.58 .46	6.0 4.4	0.084 0.18		VYDEQ ³⁴
PGDW50	Aug-14 7.09 6 Apr-12 8 04 59			33	1290 3.0		420 13 314 12		<1.42 5'	7 9 2470		.46 008 < 0.03	4.4	0.18	3220 V	VYDEQ ³⁴ EPA ³³
PGDW30 PGPW01	Apr-12 8 04 35 Mar-09 8 85 10			60.6 213	1230 3.0	0.287 8.8		.0	<1.42 5 NM	15.7 39		1.2	<0.5	0.0793		EPA ²⁹
101 01	Jan-10	10		74.7 173	{	<5.0	5.7 <5	0	NM NM	15.7 3		1.2	<0.3	0.0793		EPA ³⁰
PGPW02	Mar-09 8 57 1	883		82.9 390	,	0.643 36.	7 0.240	v V	M	8.9.851	7	0.5	<0.5			EPA ²⁹
	Jan-10			82.8 393		<5.0	34.4 <	F .0	NM	8.9 85′ 8.5 84′	,	0.5	<0.3	0.283 0.255		EPA ³⁰
	Apr-12 8 46 18	356		77	414	0.92	34.7 0		<1.00 8.			< 0.20 0.1		0.11	†	EPA ³³
PGDW01	Mar-09	T I	1	234	808	6.15	398 93		NM	34.3 18			6.2	NM		EPA ²⁹

			<u> </u>		_						(7)				3	
Well Name	le le		SC (µS/cm)	Alkalinity (mg/L)	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)	Br (mg/L)	Cl (mg/L)	SO4 (mg/L)	F (mg/L)	NO ₃ (N) (mg/L)	Fe (mg/L)	TDS (mg/L)	Source
ž	Date	Hd	SC	7 5 9	Na Na	Ž	3	ž	Br	ן ד	SC	F(월 5	Fe	=	
PGDW02	Mar-09 8	11 551		108	85.8 1.8		34.8 5.	32	NM	2.6 17:	5	0.7	<0.5	NM		EPA ²⁹
PGDW03	Mar-09 9			39.5 272		0.403 16.		V	M	25.1 54		0.9	<0.5	0.0147		EPA ²⁹
	Jan-10 8.	71 1390		28.0 25		< 5.0	16.3 <		NM	20.7	570	0.8	< 0.3	< 0.100		EPA ³⁰
PGDW04	Mar-09 9	.17 1370		28.7 270		0.384 18		0.12	NM	21.6 5		0.9	< 0.5	NM		EPA ²⁹
	Jan-10 9.			38.3 265		< 5.0	15.5 <		NM	23.3	532	0.9	< 0.3	< 0.100		EPA ³⁰
PGDW10	Mar-09 8	95 948		147	204	0.394 6.1				8.0 293	}	0.9	< 0.5	NM		EPA ²⁹
	Mar-09 8	162 985		147	204	0.400 6.1				8.0 2	89	0.9	<0.3 <0.3	NM	.	EPA ²⁹ EPA ³⁰
DCDW12	Jan-10 8.			147	195	<5.0	5.76 <		NM	7.5 293 6.2 343	<u> </u>	0.9 0.7		<0.100 NM		EPA ³⁰ EPA ²⁹
PGDW13 PGDW15	Mar-09 6 Mar-09 7			303	196 269	1.85	61 72.2 10	19.9	NM NM	9.9 520	P h	0.7	1.0	0.274		EPA ²⁹
PGDW15	Mar-09 9		1011	145	188	0.312 6.4			INIVI	13.4 25		0.8	<0.5	NM		EPA ²⁹
PGDW16	Mar-09 9		1011	21.2 278	100		2 0.527	INIVI	M	49.5 58		2.0	<0.5	0.0204		EPA ²⁹
PGDW17	Mar-09 8			20.5 509		0.413 21.		J J	M		380 1.8	2.0	0.5	NM		EPA ²⁹
PGDW19	Mar-09 7			291	194	1.36	29	3.24	NM	6.9	196	0.9	2.6	NM		EPA ²⁹
PGDW29	Mar-09 9			52.3 298		0.417 19.		0.2.	NM	24.6 59		0.9	<0.5	NM		EPA ²⁹
PGDW38 ·	Mar-09 8			46.9 373		2.28	70	2.3	NM	46.9 90		1.3	5.9	0.018		EPA ²⁹
unidentified			1340		210						860				884 G	res & Assoc. 25
unidentified											300				580 G	
unidentified			2180		459						990					ores & Assoc. 25
P14914P			2810		362						945				2150 (
P98757W			1261		255						439				813 G	
unidentified			1400		203						480					res & Assoc. 25
P58929W			1250		400						400				825 G	
P34345W					190						400				680 G	
P59104W unidentified			974		210 210						460 345				644 Go	res & Assoc. ²⁵ Gores & Assoc. ²⁵
P24507P			9/4		210					-	2900					ores & Assoc.
unidentified			913		174						320				570	Gores & Assoc. 25
unidentified .			713		447						1110				1750	Gores & Assoc. 25
P97501W					555						1161				4010 0	
unidentified			457		38						67				302 G	
P30217W											2700				4180 0	ores & Assoc. 25
unidentified											827				1290 (or es & Assoc. 25
P182983W			886												585 G	res & Assoc. ²⁵
unidentified			1140												752 G	
P46362W					140						1100				1550 (
P62641W					970						2200				3550 C	
unidentified											2140			1	3100 0	
unidentified	-										642					or es & Assoc. 25
P53567W					175						84				384 G	
P25636W			1500		200						750					ores & Assoc. ²⁵
P110443	 		1539		298						570			-		or es & Assoc. ²⁵
unidentified '		-			454					-	620			-	1800 C	
P28496W P26200W		-								-	29 2610		-			res & As soc. 25
r20200W			<u> </u>					l			2010				1 2880 C	ores & Assoc.

. . . .

Well Name	Date	pH	SC (µS/cm)	Alkalinity (mg/L) (CaCO3)	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)	Br (mg/L)	CI (mg/L)	SO4 (mg/L)	F (mg/L)	NO, (N) (mg/L)	Fe (mg/L)	TDS (mg/L)	Source
unidentified			2160		445						988				1530 C	ores & Assoc. 25
unidentified			3790		339						2310				3510 €	ores & Assoc. 25
P40603W											210				710 Gc	res & A ssoc. ²⁵
P76475W			1320		260						540				808 Go	re s & Assoc. ²⁵
P14548P											1049				1690 C	ores & Assoc. ²⁵
P30162W											169					Gores & Assoc. ²⁵
P32163W											690				1130 C	ores & Assoc. ²⁵
P9941P			2720		579						1290				2040 C	or es & Assoc. ²⁵
P116598W					229						119				376 Go	res & Assoc. ²⁵
unidentified											296				930 Go	re s & Assoc. ²⁵
P25011W											2400				3560 C	ores & Assoc. ²⁵
P177246W			1180		248						457				775 Go	
			1180	T	126				1	1	237	[[· · · · · · · · · · · · · · · · · · ·		590 Go	res & As soc. 25
P190223W			920												607 Go	res & Assoc. ²⁵
P191733W			956												631 Go	res & Assoc. ²⁵

NM – not measured

C – Summary of Production Well Construction and Stimulation

232

Table SI C1. Production well construction summary (listed in order of completion date). Information retrieved from well completion reports using API number

Fable SI C1. Production well constru	icuon summa	iry (fisted in C	rder of comple	non date). I	шоппа	non reme	ved from	wen con	ipienon	reports u	Sing API	number
API Number Well Name	Abbreviation	Latitude	Longitude	Completion Date	Year Plugged & abandoned	Ground Elevation (m AMSL)	Total Depth (m)	Depth to Fort Union (m bgs)	Surface Casing (m bgs)	Top of Primary Cement (m bgs)	Mud Filled Interval Below Surface Casing (m)	Drilling Mud
49-013-06388 Mae H. Rhodes 1	MHR 1	43.26009	-108.63519 12/	31/1953 1953 1	642.0		3,353 10	41.8 156.7	541		2812	"Chem Gel"
49-013-06357 Ora Wells 14-12	14-12	43.24571	-108.59549 8/7			1622.8		48.5 190.5			1	Invert
49-013-06359 Govt 23-7	23-7	43.24841	-108.57139 5/1	1/1961 196	1 1612.	7 G	2,450 ?		176.2 19	60	1784	Q-Broxin Gel
49-013-06474 Wirth 1	W 1	43.29472	-108.65019 10/		61 1680	.7		4.5 200.9 1		В	2698	"Gel"
49-013-06395 Tribal Pavillion 23-2	23-2	43.26371	-108.61039 12/			1631.9		27.5 195.1		5	0	Invert
49-013-06451 Shell Govt 22-35	22-35	43.28179	-108.61019 2/2		57.5	G	1,676 ?		189.6 N		1486	Invert
49-013-06358 Govt-Ocean Lake 1	GOL 1	43.24649	-108.52271 6/1			1599.0 ^G		19.2 177.7			355	Invert
49-013-06389 Tribal Pavillion 14-1	14-1	43.26021	-108.59541 6/1			1631.6		41.2 205.4		2	17	Invert
49-013-06376 Govt 21-8	21-8	43.25711	-108.55111 7/1	1/1963 ?		1629.5 ^G		96.7 189.3		E	?	Invert
49-013-06413 21-5	21-5	43.27111	-108.55099 7/1		1626.7		1,524 11		192.3 65	5 R	463	Invert
49-013-06341 Unit 13-13	U 13-13	43.23449	-108.595	7/16/1963		G	1,411 ?		190.2 ?	Е	?	Invert
49-013-06392 Tribal Pavillion 14-6	14-6	43.26056	-108.57556 7/1			G	1,219 ?		184.7 ?	E	?	Invert
49-013-06402 Govt 32-4	32-4	43.26739	-108.52629 7/1	8/1963 196)	1,524 ?		188.1 N		1336	Invert
49-013-06336 Unit 24-14	24-14	43.23231	-108.60861 1	1/22/1963				21.7 186.8			209	Invert
49-013-06273 Govt 44-20	44-20	43.21694	-108.54119 3	/16/1964 196		2 G	1524 ?		187.4 N	one ^B	1337	Invert
49-013-06281 Woodring 23X-24	23X-24	43.21879	-108.59271 4/2				1,250 ?		184.4 N		1066	Invert
49-013-08017 Runner Herfords 44-17	44-17	43.23091	-108.65981 5/2				1,292 ?		183.8 N		1108	Invert
49-013-06424 Govt 34-33	34-33	43.27444	-108.64449 5	/27/1964 ?		1652.9 ^G	1.558 ?		183.8 ?	Е	?	Invert
49-013-06363 Govt Tribal 33X-10	33X-10	43.25019	-108.62528 12/		643.2			25.7 67.4		23	2787 ^I	Invert
49-013-06387 Tribal Pavillion 24X-3	24X-3	43.26151	-108.63161 11/					02.2 188.	1 94	7 R	759	Invert
49-013-06355 14-11	14-11	43.24649	-108.61341 12/			G	1,503 ?		185.3 ?	E	?	Invert
49-013-06917 IND 13-13	13-13	43.27589	-108.55431 1/	20/1966 ?		1637.1 ^G	1,177 ?		186.8 ?	R	?	"Chem Gel"
49-013-20062 Tribal Pavillion 31-15	31-15	43.24194	-108.62519 2/2		2.2		1,050 ?		205.7 ?	N	?	Invert
49-013-20084 Maxson 32-9	32-9	43.25278	-108.64511.5	/27/1968 196		•	1,070 10	57	187.8 N	one ^B	882	Invert
49-013-20298 W. E. Lloyd	WEL	43.26011	-108.62528 2/	23/1972 198	1 1639.2	2	4,747 10	25.7 277.7	?	N	?	"Chem Gel"
49-013-20414 Unit 41X-10	41X-10	43.25511	-108.62201 1/2					24.1 188.7		P	229	Invert
49-013-20454 IND 14-20-258 41X-2	41X-2	43.26944	-108.60241 11/				1,526 10	72.9 185.0	?	A	?	Invert
49-013-20457 Tribal Pavillion 31X-3	31X-3	43.26949	-108.62556 12/2				1,569 10	28.4 188.	4 35		0	Invert
49-013-20442 W.H. Paul Patent 42X-11 42X-		43.25349	-108.60231 1/1	9/1974 162	7.9		1,533 10	16.5 183	.2 ?	A	?	Invert
49-013-20443 Unit 42X-12	42X-12	43.25444	-108.58139 1/1					54.6 184.4		A	?	Invert
49-013-20456 Unit 31X-14	31X-14	43.24071	-108.60569 1/1	9/1974 1629	9.2		1,569 10		185.0 ?	A	?	Invert
49-013-0491 Clair C Day	CCD	43.20167	-108.67991 5/1	6/1974 197)		30.2 194.5		В	2251	Invert
49-013-20581 TR1-22	TR1-22	43.22741	-108.62019 2/7	1976	1986 1		1,280 11		186.5 79	3	607	Invert
49-013-20586 Tribal 1-21	1-21	43.22741	-108.63944 3	/17/1976 193			1,209 11	73.5 190.5		В	1019	Invert
49-013-20598 Taylor Patented 1	TP 1	43.22806	-108.61041 5/1			1610.0	1,222 ?		127.4 ?	N	?	Invert
49-013-20602 Tribal 1-31	1-31	43.27409	-108.56089 7	/23/1976 197	7 1631.0			38.1 125.3		N	?	Invert
49-013-20654 Tribal Unit 1	TU 1	43.22849	-108.61409 11/					82.3 200.3			<349	Invert
49-013-20668 Blankenship Fee 4-8	4-8	43.26556	-108.64009 3/2				1,586 ?		135.3 56	4 R,P 429)	Invert
49-013-20700 Roland Patented 34-13	34-13	43.27528	-108.63379 8/3			1615.4	1,981 12	28.3 147.2		N	?	Invert
49-013-20748 Shoshone-Arapahoe 24-11 T24		43.24556	-108.49179 5/1		08.1	G	4,564 ?		457.8 N	one B	4106	Invert

					ate	ઝ	rtion	m)		g (m	ry (s)	Interval	
API Number	Vame	Abbreviation	ıde	tude	Completion Date	Year Plugged & abandoned	Ground Elevation (m AMSL)	Total Depth (m)	Depth to Fort Union (m bgs)	ce Casing (m	Top of Primary Cement (m bgs)		Drilling Mud
API N	Well Name	Аврге	Lafifude	Longitude	Comp	Year	Groun (m.A.)	Total	Depth Union	Surface (bgs)	Top o	Mud Filled Below Surf Casing (m)	Drillin
49-013-20775 T	ribal 24-4	24-4	43.22849	-108.59569 5	/22/1978 197	8 1622.		1,216 10	99.7 120.7	None	В	1095	Invert
49-013-20764 D	oles Unit 44-15	44-15	43.23056	-108.61959 6/2	1978	162	29.5	1,638 11	23.5 189.6	198		8	Invert
49-013-20854 U		21-11	43.25521	-108.61039 3	/14/1979	1632.2			21.1 187.5			279	Invert
49-013-20855 T	ribal Pavillion 12-13	12-13	43.23959	-108.59556 5/1	2/1979 2001 162	24.0		1,646 10	90.3 175.6	29	0	114	Invert
49-013-20875 U	SA Tribal 258 41-9	41-9	43.25651	-108.63981 8/2	1/1979 1641	.3		1,585 ?		184.1 27	' 4	90	Invert
49-013-08274 T	ribal Unit 2	TU 2	43.22841	-108.60556 8/2	1/1979 1979 16	11.5		1,309 ?		199.6 83	8	638	Invert
49-013-20876 U	SA Tribal 258 22-10	22-10	43.25194	-108.63222 10/	13/1979 164	8.4		1,570 10	24.1 185.3		550	365	Invert
49-013-20965 G		G 1	43.24167	-108.67261 10/	3 1/1979 19	79 1644	.1	1,675 ?		200.9 N		1474	Invert
	SA Tribal 258 21-15	21-15	43.24209	-108.63139 12/				1,585 10		188.7 ?	A,R,P	?	Invert
49-013-20879 U		44-10	43.24649	-108.62161 1	2/17/1979			,	27.2 184.4			401	Invert
49-013-20878 U	nit 22-12	22-12	43.25306	-108.59269 1	/17/1980	1622.8		1,585 10	33.6 178.6	?	A	?	Invert
49-013-20857 T	ribal Unit 238 11-14	11-14	43.24151	-108.61299 2/5	1980	162		1,600 10	31.1 184.1	?	N	?	Invert
49-013-21026 T	ribal Pavillion 16-28	16-28	43.29028	-108.52409 7/1	5/1980 ?		1612.7 ^G	1,386 ?		163.1 ?	N	?	KCl polymer
49-013-21086 Fi	nayson 1-17	F 1-17	43.23139	-108.66556 9/7	1980	1980 1		1,710 11	21.7 190.5	None	В	1520	Invert
49-013-21128 T	ribal Pavillion 14-2	14-2	43.26021	-108.61583 5/2	3/1981 1634	.9	G	1,577 10	07.1 182.6	677	R,P 49	4	Invert
49-013-21088 W	est Pavillion 1-8-1B	1-8-1B	43.25619	-108.66944 6/1)/1981 1981 16	73.0	G	1,587 ?		183.5 N	one ^B	1404	Invert
49-013-21130 T	ribal 21-9	21-9	43.25639	-108.65011 6	/24/1981 199	2 1642.5)	1,617 10	07.7 248.4	318		70	Invert
49-013-21129 U	nit 12-3	12-3	43.26659	-108.63569 7/8	/1981		1644.4 ^G	1,590 10	43.3 185.9	?	A	?	Invert
49-013-21157 R	unner Herfords 1	RH 1	43.23056	-108.65949 10/	7/1981 1981 16	32.8		1,221 11	18.6 185.9	None	В	1035	Invert
49-013-21087 Jo	hn K. Coolidge 1-4	1-4	43.26306	-108.64944 5/20)/1982 1647	.7		1,143 10	72.3 200.6	<3	96 < 19)5	Invert
49-013-21302 T	ribal 14-24	14-24	43.21631	-108.4725	9/22/1982 198	2 1575.	3	2,698 15	92.6 315.5	<579		<264	KCl polymer
49-013-21346 Fi	ke Tribal A-1	A-1	43.29259	-108.64449 4/20)/1983 1677	.6		1,635 10	10.1 184.7	515		330	Invert
49-013-21312 O	cean Lake Tribal 1-15	1-15	43.23789	-108.51091 4/2	1/1983 1990 15	33.4		4,807 11	43	304.8 < 1	189 <8	84	Invert
49-013-21421 T	ribal B-1	B-1	43.29539	-108.65472 9/1	9/1984 198	4 1671.	5	1,674 ?		181.4?	A	?	Invert
49-013-21670 Pa	villion Fee 33-11	33-11	43.24846	-108.6039	9/15/1993	1627.6		1,539 10	51.6 190.8	<91		0	KCl polymer
49-013-21669 Pa	willion Fee 12-11	12-11	43.25227	-108.61483 10/	19/1993 163	2.8		1,976 10	05.8 191.1	2	68	77	KCl polymer
49-013-21676 T	ribal Pavillion 11-10	11-10	43.25648	-108.6348	12/29/1993	- 1642.0		2,463 10	44.5 190.5	79		602	KCl polymer
49-013-21696 T	ribal Pavillion 42-10	42-10	43.254179 -10	8.62039 6/15/19	94 1636.2			1,827 10	09.5 190.	8 78	9 R(3)	598	KCl polymer
49-013-21691 T	ribal Pavillion 31-10	31-10	43.25633	-108.6246	6/25/1994		1637.4	1,820 10	08.9 182.3	6	44	462	KCl polymer
49-013-21692 T	ribal Pavillion 23-10	23-10	43.24889	-108.63068 7/1	5/1994		1647.7	1,829 10	42.4 184.4		? ^T	?	KCl polymer
49-013-21704 T	ribal Pavillion 43-10	43-10	43.24925	-108.62076 9/2	/1994		1639.2	1,815 10	13.8 195.4		? ^A	?	KCl polymer
49-013-21693 T	ribal Pavillion 33-2	33-2	43.26208	-108.60522 11/	3/1994		1631.6	1,676 10	26.6 192.0	61		0	KCl polymer
49-013-21697 T	ribal Pavillion 23-1	23-1	43.26396	-108.59019 11/	11/1994		1651.7	1,617 10	77.8 182.9	5	94	411	KCl polymer
49-013-21695 T	ribal Pavillion 41-15	41-15	43.24277	-108.61865 11/2	23/1994		1631.0	1,989 10	38.1 185.0	?		?	KCl polymer
49-013-21720 T	ribal-Pavillion 43-6	43-6	43.26299	-108.5767	5/26/1995		1621.2	1,219 11	08.3 128.0	?	A	?	KCl polymer
	ribal Pavillion 23-11	23-11	43.25071	-108.60653 2/9	1998	163	31.0	1,689 10	13.2 167.0		<152	0	KCl polymer
49-013-21834 T	ribal NP 31-11X	31-11X	43.2848	-108.57413 11/	19/1998		1677.6	4,359 11	58.2 705.9	?	Е	?	KCl polymer
49-013-21904 Pa		13X-3	43.26333	-108.63417 1/1		30.7			38.1 192.0		T	?	PHPA/LSND
49-013-21905 Pa	willion Fee 42X-9	42X-9	43.25278	-108.63806 2/1	/1999		1647.1	1,554 10	55.8 185.9	518		332	LSND
49-013-21866 Pa	willion Fee 41-11	41-11	43.25556	-108.6000	2/12/1999	1627.3		1,554 10	32.7 169.2			0	LSND
49-013-21862 T	ribal Pavillion 33-10	33-10	43.24917	-108.62556 5/6		16	57.3	1,820 10	55.2 156.7	20	7	50	PHPA/LSND
49-013-21907 T	ribal Pavillion 33-3	33-3	43.26306	-108.62556 5/2	5/1999 1642	2.0		1,190 10	22.3 154.5	?	T	?	PHPA
49-013-21906 T	ribal Pavillion 44-3	44-3	43.25944	-108.62111 6/2				1,832 10	10.4 171.6	6	71 ^R	499	PHPA/LSND
49-013-21840 T	ribal Pavillion 15-21X	15-21X	43.24055	-108.62952 7/2	1999	16	38.3	4,919 10	66.8 244.	8 ?	T	?	Invert
49-013-21968 T	ribal Pavillion 32-10	32-10	43.2533	-108.626	5/10/2000	1643.2		1,707 10	05.8 190.8	61	0	419	LSND

API Number	Well Name	Abbreviation	Latitude	Longitude	Completion Date	Year Plugged & abandoned	Ground Elevation (m AMSL)	Total Depth (m)	Depth to Fort Union (m bgs)	Surface Casing (m bgs)	Top of Primary Cement (m bgs)	Mud Filled Interval Below Surface Casing (m)	Drilling Mud
49-013-22058 Pa	villion Fee 13-11	13-11	43.24861	-108.61306 2/2	3/2001 163).1		1,768 10	05.2 186.5	<2	44	<58	PHPA
49-013-22057 Pa		21-13	43.24083	-108.58861 2/2				1,067 ?		134.7 ?	N	?	DeepDrill®
49-013-22068 Tr	ribal Pavillion 43-2	43-2	43.26333	-108.59972 3/1	2001	16	34.6	1,036 ?		109.7 <1	07	0	Unknown ^R
49-013-22070 Tr	ibal-Pavillion 13-2	13-2	43.26371	-108.6158	3/8/2001	16	33.7	1,036 ?		123.1 19	8	75	DeepDrill®
49-013-22101 Tr	ribal-Pavillion 24-1	24-1	43.261667 -	108.59056 3/2	3/2001 163	7.7		1,036 ?		125.0 12	2	0	LSND
49-013-22026 Tr	ribal-Pavillion 32-1	32-1	43.26722	-108.58278 3/2	3/2001 165	2.6		1,030 ?		109.7 18	2.9	73	LSND
49-013-22072 Tr	ribal Pavillion 34-2	34-2	43.26023	-108.60533 3/2	4/2001 163	2.2		1,036 10	22.9 118.0	1	5	0	LSND
49-013-22069 T	ibal Pavillion 12-6	12-6	43.2675	-108.57555 3/2	9/2001 1620	0.0		1,097 10	85.7 120.4	?	N	?	DeepDrill
49-013-22027 Tr	ribal Pavillion 44-1	44-1	43.26027	-108.58027 3/3	1/2001		1638.0	1,067 ?		111.9 < 1	22	<10	LSND
49-013-22099 Tr	ribal Pavillion 14-10	14-10	43.245833 -10	08.635	4/13/2001		1640.7	1,067 97	4.75 110.3	44	2	332	DeepDrill®
49-013-22104 Pa	villion Fee 13-15	13-15	43.23583	-108.63389 4/1	4/2001 2006 16	32.5		1,113 ?		132.9 ?	N	?	PHPA
49-013-22102 Pa	willion Fee 12-11W	12-11W	43.25194	-108.615	5/3/2001		1632.5	991	?	131.1 59	4 R	463	LSND
49-013-22087 Pa	villion Fee 34-3R	34-3R	43.26028	-108.62528 5/4	2001		1638.6	1,097 10	15.0 110.3	668		558	PHPA
49-013-22059 Pa	villion Fee 11-11	11-11	43.2551	-108.61361 5/1	7/2001		1632.2	1,782 10	01.6 161.8	<91	R	0	PHPA
49-013-22061 Te	ibal Pavillion 12-5	12-5	43.2675	-108.55555 5/2	3/2001		1621.5	1,058 ?		112.2 49	4	382	PHPA
49-013-22060 Pa	villion Fee 13-12	13-12	43.25083	-108.59306 6/1	2001		1622.5	998	?	99.7 280		180	LSND
49-013-22103 Pa	villion Fee 34-11	34-11	43.24514	-108.60531 6/1			1628.5	1,024 ?		161.5 ?	A	?	"gel"
49-013-22128 Tr	ribal Pavillion 13-1	13-1	43.26433	-108.59553 6/2	8/2001		1652.3	1,071 ?		163.1 ?	N	?	LSND
49-013-22105 T	ribal Pavillion 11-12	11-12	43.25639	-108.59422 8/3	2001		1626.7	970	?	164.3 12	2	0	LSND
49-013-22125 Pa	villion Fee 21-10	21-10	43.25625	-108.63078 8/1	0/2001		1641.0	1,807 10	15	201.2 69	2	491	LSND
	ribal Pavillion 43-1	43-1	43.26378	-108.58139 9/1			1648.7	1,128 ?		162.2 15		0	PHPA
	ribal Pavillion 33-1	33-1	43.26381	-108.58536 9/6			1646.8	1,059 ?		163.1 15		0	LSND
	ribal Pavillion 12-7	12-7	43.25265	-108.57613 9/8			1621.8	1,021 ?		164.0 ?	N	?	LSND
	willion Fee 21-10W	21-10W	43.25625	-108.63039 9/1			1640.4		11.9 189.0		42	253	LSND
49-013-22186 Pa		23-12	43.25072	-108.58917 9/1			1621.5	994	?	162.8 15		0	LSND
	ribal Pavillion 44-2	44-2	43.26011	-108.60217 9/2			1634.3		21.1 162.8		A	?	?
49-013-22172 Pa		31-9	43.25686	-108.64486 9/2			1645.6	1,050 ?		162.8 61		0	LSND
	ibal Pavillion 34-10	34-10	43.24658	-108.62526	10/6/2001		1646.5		46.4 197.5	<188		0	LSND
	ribal-Pavillion 34-1	34-1	43.26083	-108.58639 10/			1639.8	1,020 ?		162.8 ?	A	?	LSND
	ribal Pavillion 21-12	21-12	43.25639	-108.59114 10/			1629.2	1,128 ?		107.3 15	9	52	LSND
	ibal Pavillion 12-10	12-10	43.25167	-108.63556 11/			1645.0	1,496 ?		189.6 31		0	LSND
	ibal Pavillion 12-1	12-1	43.26778	-108.59169 11/			1642.0	1,128 ?		162.8 73		0	LSND
	ribal Pavillion 42-3	42-3	43.26778	-108.61922 11/			1641.0		35.4 162.8		61	0	LSND
	ribal-Pavillion 22-1	22-1	43.26725	-108.59011 11/			1657.2	1,128 ?		162.5 46		0	LSND
	ibal Pavillion 33-10W	33-10W	43.24869	-108.62681 12/			1668.2	1,545 10		9 20		43	LSND
	ibal Pavillion 41-3	41-3	43.27056	-108.62056 12/			1643.8	,	37.2 157.6		A A	?	LSND
49-013-22215 Pa		22-11	43.25283	-108.61128 12/			1632.2	972	?	189.0 ?		?	LSND
49-013-22200 Pa		43-11	43.25089	-108.60044 12/			1627.0		26.3 162.5		22 N	0	LSND
49-013-22212 Par		11-3	43.27083	-108.63369 1/9			1647.7	-,	32.4 160.9			?	LSND
	villion Fee 41-10	41-10 13-12W	43.25586	-108.62092 1/2			1637.4	969	? 44.9 159.7	162.8 16	3	2	LSND PHPA
	villion Fee 13-12W		43.2485	-108.59681 1/2			1624.3					0	
	villion Fee 24-3B	24-3B	43.25947	-108.63089 2/8			1641.3		12.9 200.9				LSND
49-013-22220	Pavillion Fee 11-11B	11-11B 31-11	43.25697 43.25703	-108.61594 -108.60528 2/2	2/16/2002		1635.3 1629.5		04.3 170.7 19.6 165.8			0	LSND LSND
49-013-22106 Pa													

er					Completion Date	Year Plugged & abandoned	Elevation L.)	Total Depth (m)	Depth to Fort Union (m bgs)	Casing (m	Top of Primary Cement (m bgs)	Mud Filled Interval Below Surface Casing (m)	Pa
API Number	Name	Abbreviation	<u> </u>	l de	stio	Year Plugg abandoned	Ground Ele (m AMSL)	ept	E E	Ö	Prin I	Mud Filled Below Surf Casing (m)	Drilling Mud
N.	Ž	rev	Latifude	Longitude	Å l	판월	ĬŠ.		# E	Surface bgs)	of Hear	E E B	ling
NPI .	Well	7PP	ati	E	5	ea bar	O.K.	30	d ji	url (são		Mud F Below Casing	Ē
											-		
	willion Fee 32-11	32-11	43.25356	-108.60664 3/2			1630.7		16.8 175.0		A	0	LSND
	willion Fee 44-11	44-11	43.24513	-108.60059 3/6			1627.0		36.3 162.2		71	?	LSND
	willion Fee 42-9W	42-9W	43.25308	-108.64158 3/2			1642.9	1,042 ?		161.8 0		0	LSND
	willion Fee 32-9W	32-9W	43.25408	-108.64472 3/2			1645.6	1,055 ?	12.0.100	162.2 0		0	LSND LSND
	ribal Pavillion 32-10B avillion Fee 13-11B	32-10B 13-11B	43.25328 43.24961	-108.62539 3/2 -108.61672 4/9			1638.0 1633.7	1,783 10	12.9 189. 16.2 188.1	6 55	5 R(4)	437	LSND
	willion Fee 14-3W	13-11B 14-3W	43.24961	-108.63575 4/1			1633.7		27.5 189.0		3-5.7	0	LSND
	ribal-Pavillion 12-2	12-2	43.26694	-108.61506 12/			1634.9		36.3 159.1		.5	0	LSND
	ribal-Pavillion 23-10W	23-10W	43.24886	-108.63153 12/			1648.4	1,399 10		.80	.ي	0	LSND
	ribal Pavillion 23-10C	23-10W 23-10C	43.24789	-108.62947 10/		6.1	1046.4	1,399 10	41.8 102	175.6?		9	LSND
	willion Fee 34-3B	34-3B	43.26033	-108.62783 10/				/	05.8 196.6		38 ^R	641	LSND
	ribal Pavillion 24-2	24-2	43.25989	-108.61097 11/		FU. 1	1636.2		20.8 171.3		13 ^R	42	LSND
	ribal Pavillion 23-10B	23-10B	43.25047	-108.63122 11/			1649.0	1,721 10		4 29		104	LSND
	ribal Pavillion 33-10B	33-10B	43.24953	-108.62428 12/			1638.0	1,710 10		.8 61		0	LSND
	avillion Fee 12-11B	12-11B	43.25422	-108.61597 1/1			1634.3		01.9 167.9		11 ^R	143	LSND
	ribal Pavillion 43-10B	43-10B	43.24761	-108.62094 1/2			1657.8	1,756 10		9 35			LSND
	ribal Pavillion 24-11	24-11	43.24517	-108.61017 1/2			1630.7		28.7 160.9	, , ,	177	16	LSND
	willion Fee 31-10B	31-10B	43.25494	-108.62822 1/2			1639.2		11.3 192.0	4	11 R	219	LSND
	willion Fee 33-11B	33-11B	43.25061	-108.60636 1/2			1629.8	1,212 ?	11.5 172.0	155.8 14		0	"water based"
	avillion Fee 44-11B	44-11B	43.24686	-108.60303 1/2			1627.6		33.3 193.5		83	0	LSND
	ribal Pavillion 21-14	21-14	43.24125	-108.60981 1/2			1632.2	1,707 10		192.0 ?	T	?	LSND
	willion Fee 13-10	13-10	43.24911	-108.63539 2/3			1642.6		45.5 193.2		N	?	LSND
	willion Fee 21-10B	21-10B	43.25481	-108.63272 2/3			1640.4		13.2 193.2		65 ^R	1072	"water based"
	willion Fee 43-11B	43-11B	43.24806	-108.60033 2/1			1626.1		31.7 192.9			0	"water based"
49-013-22324 T	ribal Pavillion 42-10B	42-10B	43.25219	-108.62019 2/1	6/2005		1635.6	1,708 10	09.2 189.	3 0		0	LSND
49-013-22271 Pa	villion Fee 22-11B	22-11B	43.25147	-108.61264 2/1	6/2005		1632.5	1,372 10	10.7 192.3	0		0	"water mud"
49-013-22419 T	ribal Pavillion 32-10C	32-10C	43.25222	-108.6275	2/18/2005		1640.1	1,225 ?		190.8 31		0	LSND
49-013-22314 Pa	willion Fee 22-11C	22-11C	43.25431	-108.60886 2/2	3/2005 1631	6			5.55 193.5		?N	?	LSND
49-013-22634 Pa	villion Fee 44-4	44-4	43.25944	-108.63994 3/1	5/2005 164	1.1		1,737 ?		186.2 SI	BL		LSND
41-013-22255 T	ribal Pavillion 12-12	12-12	43.253	-108.59683 3/1	7/2005		1625.8	1,205 10	49.1 193.5	29	0^R	97	"water based"
49-013-22617 T	ribal Pavillion 33-2C	33-2C	43.26319	-108.60839 3/2	2/2005		1632.2	1,131 10	27.2 194.8		15	0	LSND/PHPA
49-013-22627 T	ribal Pavillion 13-2B	13-2B	43.26333	-108.61317 3/2	9/2005		1633.7	1,210 10	26	196.6 15		0	?
49-013-22633 Pa	willion Fee 43-4	43-4	43.26261	-108.64022 4/2	/2005		1645.6	1,446 10	35.1 182.9	15		0	LSND
49-013-22625 T	ribal Pavillion 33-2B	33-2B	43.26322	-108.60333 4/5	/2005		1633.1	1,129 10	34.8 196.6	1	5	0	LSND
49-013-22623 Pa	willion Fee 14-3B	14-3B	43.25944	-108.63425 4/5			1642.6	1,199 10	28.7 189.0	15		0	DeepDrill®
	willion Fee 41-11B	41-11B	43.25703	-108.6025	4/14/2005		1628.5		17.1 196.0		4	78	?
	willion Fee 42-4B	42-4B	43.26764	-108.63994 4/1).3			46.1 196.6		8	1	LSND
	ribal Pavillion 21-11B	21-11B	43.25694	-108.61092 4/1			1632.2	1,181 98		7 15		0	LSND
	willion Fee 13-3W	13-3W	43.26292	-108.63642 4/2			1645.6	1,403 10		185.3 19		13	LSND
	willion Fee 41-10B	41-10B	43.25694	-108.62017 5/7			1637.1		6.39 195.1	15	2	0	LSND
	W Pavillion Fee 34-28	34-28	43.28969	-108.64469 5/2			1666.6		18.9 196.0		? ^N	?	DeepDrill®
	ribal Pavillion 32-3	32-3	43.26658	-108.62586 6/1			1643.5		13.8 196.3		A	?	LSND
	willion Fee 43-9	43-9	43.25081	-108.63997 6/1					55.2 196.0			0	DeepDrill®
	ribal Pavillion 22-3	22-3	43.26844	-108.63169 7/1		5.9			29.6 196.0	<	183	0	"water based"
49-013-22721 T	ribal Pavillion 44-3C	44-3C	43.26136	-108.62278 7/1	9/2005		1640.7	1,190 10	04.9 196.0		46	0	?

API Number	Well Name	Abbreviation	Latitude	Longitude	Completion Date	Year Plugged & abandoned	Ground Elevation (m AMSL)	Total Depth (m)	Depth to Fort Union (m bgs)	Surface Casing (m bgs)	Top of Primary Cement (m bgs)	Mud Filled Interval Below Surface Casing (m)	Drilling Mud
49-013-22245 T	ribal Pavillion 32-2	32-2	43.26949	-108.6039	3/30/2006	1640.1		1,609 10	52.8 195.1	0		0	"Gel-Chem"
49-013-22824 Pa	avillion Fee 33-12	33-12	43.24928	-108.58614 4/1	/2006	161	9.1	1,682 10	60.7 193.9	61		0	"Gel-Chem"
49-013-22819 H	aymaker 14-21	14-21	43.24208	-108.49453 5/1	6/2006		1606.0	3,597 13	49.0 766.3	?	E	?	KCl polymer
49-013-22825 Pa	avillion Fee 22-4	22-4	43.26606	-108.65239 4/3	/2007		1651.4	1,674 10	74.7 158.5	61		0	PHPA
49-013-22100 T	ribal Pavillion 42-15	42-15	43.23981	-108.62144 4/1	2/2007		1634.6	1,659 10	133	157.6?	A	?	PHPA
49-013-23068 L	eonhardt 41-26	41-26	43.1249	-108.28517 6/5	/2007	2007 15	557.2	2,286 12	07	202.7 N	one ^B	2083	Water based

Coordinates for Tribal Pavillion 32-2 incorrect in well file -approximate coordinates provided.

Abbreviations

AMSL - Absolute mean sea level

 $bgs-Below\ ground\ surface$

? - Unknown

PHPA - partially hydrolized polyacrylamides

LSND - low solids non-dispersed drilling mud

DeepDrill® is a product of Newpark Drilling Fluids and is described as a buffered blend of polyhydroxyl alcohols. No MSDS on this product was provided to EPA.

Superscripts

- A Cement bond log (CBL) conducted at completion but not available
- B No apparent use of production casing in borehole
- E Either cement bond log not conducted at completion or not available
- G Ground elevation estimated from coordinates using "GPS Visualizer" located at: http://www.gpsvisualizer.com/elevation.
- I Invert mud below intermediate casing at 1236 m bgs at 33X-10
- N Well completion report indicates cement bond or temperature log not conducted at completion
- P Parted casing, leak in casing, or casing failure
- R Remedial cement squeeze(s) following primary cement. Number of CBLs in parenthesis
- T Top of cement difficult to discern high amplitude readings in cement bond log

Table S	1 C2. I	Desc	ription of	stimu	lation	stag	es in	the Pa	villio	n Fi	eld.	Inforn	nation	obtaine	d from well completion reports using API search number	
Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
MHR 1		MV													P&A after completion in 1953. "Water sands" at 5780'-5810', 7145'-7250', 7970'-8040', 9000'-9100',	Yes
															Filled with "heavy mud" from 2,141'-11,000'. Cement plug from 2017'-2141' Intermediate casing cut at 1700' and pulled. No production or stimulation.	
14-12 634	.6 WR	2/20/	1999		.46 9 10	0.93		8.36			5,150			1,134 "Pı	mped 25# linear gel w/75 % CO2, 157 bbls fluid, 85 tons CO2"	No
	941.8 W	R 12	11/1999 1/3/1964	15.93	10.34	10.6	<u></u>	4.83		X 3; X 5,	14 sx	s 			"137 bbls 75% CO2 foam" "Frac treated Wind River interval 3294-3370' and Fort Union interval 3782-3789'w/25000 gals 9.6#/gal	
	1004.0	WKI	1/3/1904		10.34	10.6	ľ	4.83		Λ),	103				salt wtrTotal load 947 bbls wtrwell flowed diesel and load wtr" "Lost 150 bbls KCl fluid"	
	1152.81	U 4/	7/1980 6.89							X					"Acidz w/2500 gal 12% i & Tylenesalt watertotal load 947 bbls wtrFlowing at rate 16 bbls salt wtr and diesel oil/day." Sundry notice dated 2/15/1980 for workover using "a. 1000 gal 15% HCl containing 2 gals A-200 inhibitor, 2 gals M38W surfactant, 1 gal J-237 diverter, and 35 lbs L-41 iron sequestering agent b. 5500 gals 12% HCl, 3% HF mud acid containing 10% U-66 mutual solvent, 22 gals A-200 inhibitor, 11 gals surfactant, 195 lbs L-41 iron sequestering agent. c. 2500 gals 3% HCl with A-200 inhibitor, M38 surfactant, and 12.5 gals L-53 clay stabilizer. Displace with 17.5 bbls 3% ammonium chloride water containing surfactant and clay stabilizer."	
	1618.51	U 8/.	/1960				1	†		Χ			†		"250 gallons of "breakdown acid" followed by cement squeeze.	
	1630.1]	FU 8/:	/1960]			X X]		I		"250 gal breakdown acid" followed by cement squeeze	
	1875.71	TU 8/:	/1960							Χ	<u> </u>				"250 gal breakdown acid" followed by cement squeeze	<u>↓</u>
23-7		L		<u> </u>		<u> </u>				<u> </u>	<u> </u>				P&A after completion in 1961. Well history missing from well completion report.	No
W 1		MT									<u> </u>				P&A after completion in 1961. No apparent production well casing. No stimulation or production.	No
23-2 501.			01 9.38 7.58 6/2001 17.9		12.07	25	ļ	ļ		X 1	3,6 9,21	05 (ł	130	"70Q CO2 foam" "70Q CO2 foam"	No
	679.1 W			f	9 65 2	\$		 		X	0,72:	<u></u>	 		"70Q CO2 foam"	
	720.5 W	R 6/1	5/2001		12.76	25	†	ļ	·		,95		†		"70Q CO2 foam" "Frac all zones"	
	893.1 W	R 2/1	/1965]	[Χ]		[
	1035.41		/1965			<u> </u>				X	<u> </u>				"Frac all zones"	
22-35		FU										•			P&A after completion in 1963. No apparent production well casing. Well history missing from well completion report. No record of production or stimulation.	No
GOL 1		FU													Completed in 1963. Perforated in three intervals in WR Formation. Put into production on 6/11/1963. P&A in 1974. No information on stimulation.	No
14-1 322.	618.4 W	R 4/1	/1993		4.76	6.96				X	17 sl	<u> </u>	0	2,735 "To	tals pumped 54 tons CO24360 gals w/meth anol." "1500 gal 15% HCL"	No
	713.8 W 925.4 W		/1993 16/1964	22.75	16.55	43 17	7.24	10.34		X X	1				"1500 gal 15% HCL" "Injected 12,000 gallons #2 diesel into intervals 3036'-3045' and 3744'-3780'. In sundry notice dated 3/25/1993 plan to "plug back water bearing perforation in the Fort Union at 3744-3780."	
21-8		WR													Perforated in WR Formation. Completed in 1963 as a shut-in well and P&A unknown time later. Well history and completion information missing.	No
21-5 352.	0 WR 12	2/8/19	99							X			0	898	Recompletion in 1999. "HES 70Q foam, 4 gal/M HgClean, 4% KCl" on 12/8/1999. Numerous perforated and squeezed intervals. No documented production or stimulation prior to recompletion.	No
U 13-13		FU											2	1,130 Pro	duction from Fort Union Formation. Informa tion on completion and possible stimulation missing from well completion report.	No

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
14-6		WR											0	27	Production from Wind River Formation. Information on completion and possible stimulation missing from	No
32-4		FU													well completion report. P&A after completion in 1963. Information on well history missing from completion report. No apparent production well casing. No stimulation or production.	No
24-14		FU											2	1,834 Pro	duction f rom base of Wind River Formation. Five perforated intervals between 3443'-3515' without stimulation.	No
44-20		FU													P&A after completion in 1964. No apparent production well casing or production. Drilling report missing from well completion report.	No
23X-24		FU													P&A after completion in 1964. No apparent production well casing or production. Cement plugs at surface, 522'-675', 2035'-2200', and 3765'-3930',	No
44-17		FU													P&A after completion in 1964. No apparent production well casing or production.	No
34-33		FU													Perforated at 2566'-2588' in WR Formation. No information on stimulation or production. Well history missing from well completion report. P&A date unknown	No
33X-10 9	86.3 WI	2/22	1965 21.36			16.5		6.89		X 5	,897	0		0	In 1964, acidized in Frontier Formation with "15,000 gals MCA." In 1964, "sptd 500 gals 15% HCl on perfs [in WR Formation] & broke formation down w/1400 psi TP (600 psi CP)total load 532 bbls. "Frac treated Wind River pers15,000 gals 9.6#/gal salt water containing fluid loss additivesTotal load 933 bbls." Completed in 1964. P&A in 1983. Drilled to Madison Formation.	yes 1
24X-3 13	59.4 FU	4/28/	1966			1.0 8	27			X			2	9,653 "Tı	eatedw/1000 gal P-12 solvent (Dow) contai ning 10 gal free-flo 'C'"	No
14-11		WR											2	1,426 Pro	ducing from Wind River Formation. Perforat ions from 3192'-3864'. Well completion report is not available.	No
13-13 10	18.0 WF	9/7/1	965 16.55			23.0	24.82	19.31		X 2	268				"Breakdown withsalt waterspearhead frac with 500 gal. 15% HCl. Frac with 5000 gal 4% salt water."	
	1099.7 1099.7		/1965 14.48 /6/1965			28.5 21.6	28.96	14.48 27.58		X 5 X 5	,443 443				"Breakdown with 750 gal salt waterInj 500 gal. 15% HCl. Frac with12,000 gal 4% salt water." "Diesel frac with 24000 gal diesel."	
32-9		FU													P&A after completion in 1968. No apparent production well casing or production. Cemented intervals 567-667', 1200-1300', 3200-3300' during P&A.	Yes
WEL 47	9.3 F 6/	14/191	'1											•	Drilled to Mowry Formation. Acidized in Frontier formation with 50,000 gal 7-1/2% HCl and 1000 gal KCl 1979. P&A in 1981.	. Yes
41X-10 5	51.4 WI	2/7/1	973			19.3	1	13.79		X					Invert mud contained up to 78% oil while drilling. "Frac treatedas follows9# KCl wtr containing 5# J-133/1000 gal2500 gal 15% HCl containing 5# J-133/1000 gal9120 gal 9# KCl wtr containing 40# J-133, 20# J-110 and 1 gal F-63/1000 gal, 1# J-134 and 400 scf/bbl nitrogen1460 gal 9# KCl wtr containing 560# J-133, 300# J-110, 15 gal F-63, 2 gal J-34 and 139,000 scf nitrogenflushed w/9# KCl wtr containing 5# J-133/1000 galWell flowed back approx. 600 BLW since opened to pitconsiderable amt of wtr." Completion report indicates that 2675 bbls of water flowed to pit between 2/7/1975 – 3/7/1975. On 3/9/1975, "A total of 145 bbls 9.23/gal KCL water was used to keep well under controlflowed control water to pit. Flowed 142 bbls in 10 hrs." Between 3/12/1975-3/26/1975, 745 bbls of water flowed from well In correspondence dated 5/27/1980 [not in well file - obtained from landowner], 41X-10 recommended for plugging and abandonment because of "problems with water production and casing failure." P&A in 1981 with cement plugs (40 sxs each) at 2400', 2900' and 3456'.	g

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	. Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1232.6	FU 2/8	/1979			6.0 4	1.82	22.75		X 4	7,17	1			While perforating FU Formation "Flowed well to pits continuously." "Controlled well w/4% KCl wtr w/clay stabilizer & surfactant. Lost 80 bbls to form while doing soacdz'd gross perf 4044-4450 w/4000 gals 15% HCl acidOpened well to pit & cont'd to flw to pit overnight to cleanup." "Foam frac treated with 90,000 gals to qualify foam, 1,950,000 SCF nitrogen & 645 bbls gelled KCl wtr for sd carrying agent. Total load to rec 645 bls." ISIP for acid stimulation = 4.14 MPa. Updated well schematic in WOGCC (2014).	
41X-2		WR :	1/28/1973												17 perforations from 1554'-4398' with diesel oil to control well. No documented stimulation or gas production	No
31X-3 39	95.6 WR	8/30/2	2001							X			0	1,215	Completed in Dec 1973 with 27 holes from 1665'-4988' and 8 holes 3154'-3161' – no apparent stimulation. Stimulated in Aug 2001, "Frac 1298-1309"	No
42X-11		WR											0	222	30 perforations from 2014' -4741' and 3 perforated intervals from 3773' and 3793' during initial completion in 1974. No documented stimulation fluids. 20 perforated intervals added during recompletion in 2001. No documented stimulation.	No
42X-12 1	1149.7 FU	1/19	/1974							X			0	295	"400 gal 15% HCl"	No
31X-14		WR											2	7,691	Producing from Wind River Formation. Perforations in Wind River and Fort Union Formations during initial completion in 1974 - no apparent stimulation.	.lNo
CCD		MV													P&A after completion in 1974. No apparent production well casing. No stimulation or production. Water at 2715'. Converted to water well.	No
TR1-22 9	961.6 WI	2/7/	980							X			0	5,281	In Sundry Notice dated 2/7/1980, "Proposed procedureAcidize well using a 3 stage acid program: a) 500 gal 15% HCl b) 2000 gal RMa c 500 gal 7.5% HCl. Note: all acid should contain 400 cc N2/Bbl acid, 10% mutual solvent and a clay stabilizerFrac well down tubing."	No
1-21		FU													"Lost 80 bbls mud to formation, probably in fractured zone 2738-43 [at 2749'-2790'] lost additional 60 bbls mud." P&A after completion in 1976. No apparent production well casing. No stimulation or production. Cement plugs at 550'-700', 3500'-3650' and 3830' – 3965'.	No
TP 1		WR											0	5,607 7	perforated i ntervals between 3406-3572. No record of stimulation.	No
1-31		WR													Perforations at 2900' and 3580'. Well completion report not available.	No
TU 1		WR											0	220	Perforated from 3460'-3537'. No record of stimulation.	No
4-8	630.9 W 814.1 W 1484.4	R 2/8	2/2005 13.10 /2005 18.27 6/1977) 	26.05	18.0 38.2		9.45		X 1 X 9 X 6	3,25	4	,110 "]	rac slici	kwater, 104 bbl s" Updated well schematic in WOGCC (2014). "Frac: slickwater121-bbls 6% KCl, 28.5 tons of CO2" "500 gal 15% BDA frac w/102,000 gallons of gel water300 scfpb nitrogen"	Yes
34-13		FU											0	290	Perforations from 2664-2676. Information on well completion missing.	No
T24-11															P&A after completion in 1978. No apparent production well casing. No stimulation or production.	No
24-4		WR													P&A after completion in 1978. No apparent production well casing. No stimulation or production.	No
44-15 12			76 22.06		9.65			4.83		X			2	1,348 "	1500 gal 15% HCldis pl'd w/28 bbls 2% KCl wtr."	No
	1530.1 1530.4	TU 4/2 TU 4/2	.8/1978 24.1 .5/1978 15.8 .4/1978 20.6	6 8	15.17 13.79 13.79			6.21 10.34 6.55		X X X	 				"Acdz'd w/1500 gals 15% HClDispl'd w/32 bls 2% HCl." "Spt'd 750 gals 15% HClDispl'd acid w/29 bbls 2% KCl." "Pump 1500 gal 15% HCldisplacing acid w/40 bbls KCl."	
24.53.53			1/1978 33.0		10.34	4.0		6.55		X	00.5		[[o	00.5	"Pmp'd 500 gals 7-1/2% HClDisplaced acid w/38 bbls 2% KCl."	<u> </u>
21-11 95		R	3/12/1979 13 3/1979		6.89 12.41	4.5 11	2.41	4.83 5.52		X 5	,897		0	335	Acidize w/850 gals 7 1/2% HCl w/2 als C-17, 2 gals J-501 II, 8 gals J-38 & 25# citric acid. Frac w/15000 gals YE4P5D fluidPump 5000 gal 3% HCl acid, displace w/2% HCl water." 13 perforated intervals from 1681-2750 in April 2001 without apparent stimulation. "Pump 3150 gals 7 1/2% HCl6 gals M38W, 6 gals A200, 13 gals L-53 & 15 gals U-40."	No

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation		Break Down Pressure (MPa)					Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
			1/1979		13.79	4.5 2	2.06	6.89		X					"Breakdown w/1100 gals 7 1/2% HCl w/2 gal M38W, 2 gal A200, 4 gal L-53 & 25/L-41. Displace w/9 bbls L-53 water foll'd 9 bbls fresh water."	
12-13 57	1032.7	WR 2/ FU 3/2	5/1981 2/1979 24.8	2	11.72						0,259 6,762 1			18	"CT [coiled tube] frac 256 bbls, 177 mcf N2". Updated well schematic in WOGCC (2014). "Acidize w/4000 gals 7 1/2 %Frac BWRversa gel" "Frac [with] 4 bbls L53+15 bbls L53 wtr+6bbls acid." "Lost thousands of bbls KCl to Basal wind river." "Acidize w/6000 gals wtr." 4252-4580 "WET"	Yes
41-9 560	634.0 W 688.2 W 788.2 W 826.6 W 876.0 W	VR 10/ VR 10/ VR 10/ VR 10/ VR 10/	1/2004 1/2004 1/2004 1/2004 1/2004			35.0	12.07			X 5 X 5 X 6 X 6	443 443 443 443 804	2		15,593 "	74 bbls 6% KCl, 16.3 tons CO2Frac down casi <u>ng"</u> "78 bbls 6% KCl, 16.3 tons CO2Frac down casing" "82 bbls 6% KCl, 16.3 tons CO2Frac down casing" "87 bbls 6% KCl, 16.3 tons CO2" "100 bbls 6% KCl, 20.4 tons CO2" "103 bbls 6% KCl, 20.4 tons CO2"	No
	1129.61				17.39	35.0				X 8	,165 7,216	5			"128 bbls 6% KCl, 24.4 tons CO2, 18,843 gal 70Q CO2 WF125Frac down casing." In proposed fracturing schedule "Pumping schedule to achieve a propped fracture half-length (Xf) of 82.9 ft with an average conductivity of (Kfw) of 3383 md.ftgel conc 7.5 lb/mgal" From stimulation report: "281 bbls 6% KCl, 81.4 tons CO2, 33,656 gal 70Q CO2 WF125Frac down casing". In proposed fracturing schedule "Pumping schedule to achieve a propped fracture half-length (Xf) of 197.6 ft with an average conductivity of (Kfw) of 5366 md.ftGel conc 7.5 lb/mgal." Composition of WF125 from stimulation report: 2.00 gal/mgal F103 surfactant, 3.00 gal/mgal F104 foamer, 15.00 lb/mgal J218 breaker, 1.0 gal/mgal J318 liquid breaker aid, 5.63 gal/mgal B142 guar polymer slurry, 2.00 gal/mgal L55 clay stabilizer.	g
	1472.21	FU 8/1	/1979 15.17	,	11.03	4.0		4.14		Х					"Lost approx. 50 bbls mud in 24 hrs." [invert mud while drilling] "At'd gross Ft. Union perfs 4830-5097 with 4000 gal 7.5% HCl containing 2 gals A-200, 2 gals M38W, 4 gals L-53 and 35% L-31 per 1000 gal acid. Press csing to 1200 psi with invert oil. Pumped 1000 gal acidspacedball sealers in next 2500 gal acid. Followed with 500 gal acid without ball sealers. Flushed with 20 bbls 2% KCl water containing 6 gal L-53 clay stabilizer." "A total of 65 bbls invert oil has been pmp'd into well" [to control well].	
TU 2 106	69.5 WR 1074.4		.979 24/1979		-:					X X		:-			"2500 gal 7-1/2% HCl" Cement squeeze after stimulation "500 gal 13% HCl"	No
22-10 60	734.3 W 937.6 W 994.3 W	/R 12/ /R 12/ /R 12/ /R 12/	2004 14/2004 14/2004 14/2004 14/2004 5/1979 7.58	13.00 22.34 29.65 28.96		18.5 22.3 29.6 28.9 11.7 4.0	8 7 5 6	8.14 8.45 8.95 9.51 0.69 1.17		X 6 X 9 X 6 X 1	,554 ,085 ,559 0,84 0,886	2		1,363 "8	9 bbls of clean fluid, 2 2 ton CO2" "129 bbls of clean fluid29 tons of CO2" "270 bbls of clean fluid17 tons CO2" "165 bbls of clean fluid27 ton CO2" "Frac: pump 92 bbls of 6% KCldidn't see a breakclean fluid 242 bbl34 tons CO2" "A.T. perfs 3274-94 w/1000 gals 15% HCl & 48 frac ballsacid containing 2 gals inhibitor, 2 gals surfactant 4 gals clay stabilizer & 3-5# iron sequestration per 1000 gals acid. Formation brokeFlushed 20 bbls of clay stabilizer water."	Yes
	1396.3 1	FU 12 FU 9/1	/9/2004 31.9 2/1979	31.21 0		46.6 49.2		32.08 1.94 5.17		X 7 X 2 X	824 4,176)			"Frac 10 bbls to catch pressureclean fluid 119 bbls19 ton CO2" "260 bbl clean fluid55 tons CO2" "Pmp'd 57 bbls 9#/gal KCl w/.5 gal per bbl brine saver, .2 surfactant & .5 clay stablizerpmp'd 5 bbls KCl into formationpmp'd 40 bbls 9#/gal KCl @ 3 BPM 600# into formationacidizedw/3400 gal 15% HClFlushed w/25 bbls of fresh water containing clay stablizer. "Acid treat w/3400 gal 15% HCl"	

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
G 1		FU													P&A after completion in 1979. No apparent production well casing. No stimulation or production.	No
21-15 7		WR 1	1/21/1979								3 ,79	2	0	24	"1000 gallons of 15% HCl". Completion record reviewed by WOGCC in letter to BLM dated 8/14/2012 concerning of 1,000 gallons of a 15% HCl solution in "compromised" casing between 735 to 1,105 feet below ground surface. "Frac treat B.W.Rw/60,000 gals DOWELLS Y-F4 PSD frac fluid"	Yes
	1071.4	WR 1	/19/1979	11.03	10.34	7.0		2.07		X					"Pmp'd 3450 gals 15% HCl containing 4 gals A-200 inhibitor, 2 gals M-38 W surfactant 4 gals L-53 clay stabilizer 35# L-42 iron sequestration agent/1000 gals of acid"	
	1071.4	FU 11	/12/1979		13.79	7.0 1	3.79	h		X			 		"A.Tw/2500 gal 15% HCl containing 2 gals A-200, 2 gals M-38 W, 4 gals L-53, 35# L-41 per 1000 gals	
	1084.8									X				ļ	acidDisplaced acid w/17 bbls fresh wtr containing L-53 clay stabilizer." "1700 gallons 15% HCl."	
	1187.5	FU 11	/2/1979		16.72	6.5		3.45		X					"Pmp'd 2500 gals 15% HClAcid contained 2 gals inhibitor, 2 gals surfactant, 4 gals clay stabilizer, 35 lbs S-41 iron sequestration agent/1000 galsDispaced acid w/19 bbls fresh wtr containing 4 gals clay stabilizer"	
44-10 8	20.2 WR	10/14	/2004	21.84	8.41 1	4.4		3.68 1	4.70	X 9	072	2		1,751 Fr	om WOGCC (2014), this interval was fracture treated with 150 barrels of CO2 assisted gelled water.	No
	869.9	0/14/	2004	22.64	8.32 1	4.6			19.91	X 8	115				Updated well schematic in WOGCC (2014) "Frac: Gel total load 218 bbls" From WOGCC (2014), this interval was fractured treated with 218 barrels of	
			/17/1979 /1/2004 31.2	8		11.7	2	10.68		X X 8	165				CO2 assisted gelled water. "Acidize: 3000 gal 15% HCl" "Break formation with 6% KCltotal fluid pumped 134 bbls" From WOGCC (2014), "In October 2004 additional Fort Union Sands were selectively perforated between 3,592' and 4,925', and fracture treated with	
	111100	1077.30	15 (2004		ļ	ļ		 	ļ	 5	1070		ļ		a total of 1,303 barrels of CO2 assisted gelled water."	
			√5/2004 √1/2004		 -			3.12 8.32 1	2 80	X 9 X 2	7 21				"197 bbls clean fluidand 20 tons of CO2 See note above on gelled water. "97 tons CO2 and 276 bbls clean fluid". See note above on gelled water.	
	1400.6	FU 9/:	24/2004 24/2004					0.32 1	2.89	$X = \frac{2}{2}$	$\frac{7,21}{2,45}$	3			"KCl prepadpump 70 quality CO2 foam frac88 tons CO2 and 11042 gal clean fluid." See note above or gelled water.	n
	1452.1	FU 9/	21/2004			46.5	1	10.51		X 7	257		·		Frac: 164 bbl 6% KCl. 150 bbl CO2" See note above on gelled water.	
			7/2004 37.1	1	20.08			4.01		X 2	0,41	2	İ		"269 bbls clean fluid and 440 bbls CO2" See note above on gelled water.	
	1531.9	FU 12	/17/1979			19.9	9 •		·	χ.]				"Acidize: 1500 gal 15% HCl" During cementing on 6/27/1979, "Pmp'd 30 bbls diesel ahead mixed w/5 gals surfactantLost returns last 40 bbls."	
22-12 5	18.5 WR	4/1/19	93										0	288	From WOGCC (2014) "In April 1993, additional Wind River Sands were selectively perforated between	Yes
	980.8 W	VR 175	/1980		17.93	25.0	33.78	6.89		X 2	9,48	1			1,701' and 2,388', and were not stimulated. On 1/5/1980, "A.T. BWR perfs4100 gals 15% HCl containing 2 gals inhibitor 2 gals surfactant 4 gals clay stabilzer & 35# iron sequestering agent/1000 gals acid 4100 gallons 15% HCL, 2 gallons inhibitor, 2 gallons surfactant, 4 gallons clay stabilzer, 35 pounds iron sequestering agent per 1000 gallons acid." On 1/10/1989 "frac treat basal W.R. w/50,000 gal Titan III-30 gel" and B-11 gel breaker (1# per 1000 gal). "Flushed to top	S
		10111	V21/1070	ļ	12				ļ		<u> </u> ,		ļ	ļ	perf w/1000 gals 2% KCl slicked w/3# per 1000 gal FR-16. All frac fluid contained 1 gal per 1000 clay master 1 gal per 1000 aqua flow - 2% KCl 1/2 gal per 1000 ASP 248."	.
	1243.6	#U 12 FU 12	/21/1979 /18/1979		13.10 13.10	4.0 7.0		6.21 5.17		X	 		 		"A.Tw/700 gals 15% HClflushed w/16 bbls." "Acid treatw/3500 gals 15% HCl containing 2 gals inhibitor 2 gals surfactant, 4 gals clay stabilizer 35#	·
	1307.6	FU 12	/12/1979		13.79	7.5	15.86	5.86		X					iron sequestering agent per 1000 gals acidflushed w/19 bbls fluid." "Acidize gross Ft. Unionw/6400 gal 15% HCl 13 gal I-15 13 gal foam X, 26 gal clay master 225# X R-2Displaced w/20 bbls clay stabilized water."	

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1432.6	FU 12	/10/1979		15.17		17.24	7.93		X					"Acidized FT. Unionw/4000 gal 15% HCL cont. 8 gal A-200 inhibitor, 8 gal M-38W surfactant, 16 gal L-53 day stabilizer, 140 # L-41 iron sequestering agentDisplaced w/31 bbls fresh water containing 10 gal L-	
			/10/1979 /10/1979							X					53 day stabilizer." "4000 gal HCl" "4000 gal HCl"	
11-14 99		2/5/19 FU 2/:	80 /1980							X X X			5	12,550	"3600 gal HCl" "2500 gal HCl" "2500 gal HCl"	No
16-28	1364.2	IF U 2/.	7/1980	1						Λ				1	Perforations from 3714'-3736'. Well completion report not available.	No
1-17	1	1						<u> </u>							P&A after completion in 1980. No apparent production well casing. No stimulation or production.	No
14-2 481	.9 WR 8	/27/19	82			0.69				X			0	44	On 11/12/1980, "Hit water flow while drilling at 4105'-4109'Drilling fluid was contaminated with watercrews attempted to reduce viscosity with the additional of dieselthe diesel and the contaminated drilling fluid did not mix in the wellbore, instead the diesel replaced the weighted mud causing a reduction in hydrostatic headthe well started to flow and was closed in." On 8/24/1982, "Pmpd 800 gals 15% HCl contag 2 gals M38 w/2 gals A-200+4 gals of L-53+#L-41Displaced w/9.5 bbls 2% KCl. On 8/25/1982, "Pumped 2000 gals 15% HClHCl contained 4 gals 38W + 4 gals A200 + 8 gals L-53 + 200 gals alcohol + 70# I-41. Pumped 2 bbls 2% KCl behind acid." Perforated at 20 depths from 1581-2980. "displace acid w/75 bbls 2% KCl"	Yes
	664.5 V	VR 4/1	/1981					†		Χ	11				"800 gal 15% HCl containing 2 gals M38 W/2 gal A-200 + 4 gals L-53 + # L-41, 9.5 bbls KCl	
	1039.1 1148.2		4/1981			8.62 7.93				x					"Spotted 3 bbls 15% HClpmpd 23 bbls 15% HCl.26 bbls 15% HClpmpd 5 bbls 4% KClto flush casing." On 4/16/1981, "bullheaded 100 bbls 4% KCl down csgspotted 3 bbls 15% HClsaw 4 perfs open up. Pmpd 23 bbls 15% HCl." From WOGCC (2014) "acidized"	
			/1981 17.93			7.93 17.9	3	3.10		X X	╂╾╾┼				"Spotted 21 bbls HC1took 2 hrs to pmp 10 bbls into formpmpd 22 bbls flush"	
	1370.1	FU 3/2	7/1981		26.20	17.0	27.58			X 2	3,587	,			"Pmp'd 20 bbls 15% HCl w/additivespumped 30 bbls acidflushed backside w/5 bbls KCl. On 3/30/1981, "frac as follows143 bbls Apollo 30 pad24 bbls gel48 bbls gel72 bbls gel72 bbls gel21 bbls 4% KCl flush."	
			27/1981		24.13					X					"Pmp'd 26 bbls acidfollowed w/24.bbls flushflushed backside w/5 bbls KCl wtrFracas follow-100 bbls Apollo 30 pad40 bbls Pad24 bbls gel48 bbls gel72 bbls gel72 bbls gelflushed w/21 bbls 4% KCl."	
	1481.3	FU 3/2	20/1981 37.2	3 [22.75	17.0	27.58	8.27		X 9	,072				"Pmpd 12 bbls acidpumped 12 bbls acidpmpd 24 bbls acidpmpd 12 bbls acidDisplaced acid w/26 bbls KCl wtrPumped 48 bbls YF4PSD pad. 24 bbls gelled wtr." then 180 bbls YF4PSD. Materials charged for in frac include 700 lbs J-347 gelling agent, 48 lbs J-218 breaker, 16 gal J-318 breaker aid, 32 gal L-53 clay stabilizer, 5 gal D-47, 5 gal MW38 surfactant, A-200 inhibitor, U42"	pper
1-8-1B															P&A after completion in 1981. No apparent production well casing. No stimulation or production.	No
21-9 657	725.4 W 796.7 W 1022.9 1129.3 1209.1 1295.1	WR 6/8 WR 6/6 FU 5/2 FU 5/2	/1981 /1981 /8/1981 /6/1981 /1/1981			6.89 6.89 23.4 11.7 11.7	2			X X X 1 X X	1,754		0	11	Information missing from well completion report but reviewed by WOGCC (2014). Well schematic in WOGCC (2014) "Acidized" from WOGCC (2014) "Acidized" from WOGCC (2014) WOGCC (2014) indicates that this interval was stimulated with "357 barels of gelled water." "Acidized" from WOGCC (2014) "Acidized" from WOGCC (2014) "Acidized" from WOGCC (2014)	Yes

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date .	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient ' (Mpa/km)	Hydraulic Fracturing	Acid Stimulation .	Proppant (kg or sxs . sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1362.8 I	TU 5/18/1 TU 5/16/1 TU 5/7/19 TU 4/29/1	.981			8.27 12.4 7.58 15.1				X X X					"Acidized" from WOGCC (2014)	
	1530.1 I	U 5/2/19 WR 7				10.3				Χ			0	1 970 Pro	"Acidized" from WOGCC (2014)	No
[]		FU ? TU 7/8/19	 981							X					duction of gas and w_ater production in WR formation in 2005. Stimulation unknown. Prodution of gas production in FU Formation in 1993. Stimulation unknown. "6500 gals HCI"	
RH 1															P&A after completion in 1981. No apparent production well casing. No stimulation or production.	No
1-4		R 6/28/2 R 5/20/1								X 2	8, <u>1</u> 21		5,982	10,417 3	perforated intervals from 1926'-2136'. No information on stimulation. "2000 gal 15% HCl, 26,000 gal 75% foam"	No
		R 5/20/1								X	 				"1600 gal 15% HCl, 500 gal NH4Cl, 1500 gal 3% HF, 12% HCl"	
14-24 100										X					"Acidized"P&A in 1982 after completion. No production.	No
		U 8/24/1						11.37		Х	† -				"Acidized"	
	727.3 W	R 4/20/1 R 4/20/1								X X 1	8,591	,	155 7,0	72	"1000 gal + 1000 gal acetic acid" squeeze and reperf "1500 gallons HCl." Completion date used. "4000 gallons HCl, 32,000 gal foam" Completion date used.	
1-15 4522		7/1983 2 7/27/19	83							X X			1,116	19	"21000 gallons of acid" in Cody Formation "20 bbls KCl, 275 gal gel water" in Cody Formation	No
B-1	900.7 W	R 9/19/1	984					I			99		I		"6000 gallons diesel + additives"	No
		U 9/19/1 U 9/19/1								X X					'6878 gallons 7½ % HCl SC + HCl-HF" "2100 gal 7½%+15% HCL + additives"	
33-11 510	.8 WR 2 570.9 W	/5/2002 R 2/5/20	15.72 02 16.20		15.51 12.41	25.0 25.0		8.91 7.45				333 4,9	/2 "BD	w/6% K0	1Frac usin g 75Q CO2, 42 bbls gel, 16 ton CO2flush w/50% CO2." "Frac-BD w/6% KC1Frac using 142 bbls 75Q CO2, 42 bbls gel, 16 tonCO242 bbls 6% flush."	No
	501.1 W	R 2/5/20 R 2/5/20	02 16.20 02 12.27 02 10.69		12.41 13.79 12.07	25.0				X 8	057 074 185				"Frac-BD w/6% KClFrac using 162 bbls 75Q CO2, 47 bbls gel, 18 tons CO248 bbls w/6% KCl." "Frac-BD w/6% KClFrac using 164 bbls 75Q CO2, 47.5 bbls gel, 18 ton CO2, 48 bbls 6% KCl flush."	
	855.9 W	R 2/5/20	02 11.72		13.79	25.0			 	X 7	031				"Frac-BD w/6% KClFrac using 143 bbls 75Q CO2 foam, 42 bbls gel, 17 tons CO285 bbls 6% KCl flush."	
		TU 9/8/19 TU 9/9/19			21.86	21.0	26.89	7.24		X X 2	8,12	3			"Acidize each zone w/500 gals 7 1/2" NEFE" [3580-3592 and 3815-3939 - total 1000 gals NEFE]. "Acidize each zone w/500 gals of 71/2" NEFE."[3807-3813 and 3830-3851-total 1000 gals NEFE]."Frac well down tbg & csg w/33,650 gal CO2 foam frac,700."	
12-11 103	0.8 FU	1/23/20)4		16.01	22.8	20.77	10.86	20.81	X 9	072	229 8.4	1 51 "Fra	c700 C	O2total load 107.1 bbls"	Yes
	1085.7 I	U 11/23	/2004		9.14 22	2.4	14.73	6.07 1:		X 1	8,14		1		"Frac70Q CO2total load 175.1 bbls"	- î . ï i
	1101.5 I	U 11/23	/2004	9.38 4.			9.38 2.	28	[X 1	8,14		[["Frac70Q CO2total load 196 bbls"	.
	1141.8 I	U 11/23	/2004 2004 8.96	16.13			17.57	4.93		$\frac{X}{V}$	8,14 4,14	;	ļ		"Frac 70Q CO2 216.8 bbl total load" "200 bbls water CO2 assist"	
		TU 10/30.		7.21 2 9.05	υ.Δ		11.11	2.86		X 6	810		·		"Sand can broke down 300# sand. Go to flush. Over flush 30 bblFrac210 bbl clean fluid + 253 from previous 463 total40 tons CO2."	
	1398.1 I	U 10/19	/2004	11.49		40.6	8	8.27	:	X 8	381		†	 	"128 bbl clean fluid, 29 tons CO2"	
	1449.0 I	U 10/14 U 10/12	/2004	16.44	38.61	25.0 18.7	l	5.23	· · · · · · · · · · · · · · · · · · ·	X 1 X 3	9,25	, 			"36 bbl clean fluid36 tons CO2" "Fracwith CO2 foam frac consisting of 11,819 gal of 2% KCl water plus 120 tons CO2total load 2% KC 279 bbls."	i i

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1624.9 I	U 10	12/2004		37.23	25.0		10.25		X 1	4,19	7			"Frac39 tons CO2 and 208 bbl clean fluid"	
11-10 800			2004	11.18	9.56 2	1.4		6.98		X 8	165	1,238		21,643 In	formation on fluids used for stimulation n ot available.	No
	818.7 W		15/2004	5.70 6	.49 15.4	1	1	7.02 1	\$.55	X 8	,165				Information on fluids used for stimulation not available.	
	858.0 W		14/2004	18.96	10.92 0.71	18.6]	I			,804		[Information on fluids used for stimulation not available.	
	897.9 W	R 10/	4/2004	5.35 1	0.71	16.6 35.0			20.36	X 6	804				Information on fluids used for stimulation not available.	
			3/2004 9.38					10.38			165				"frac…129 bbls clean fluid, 29 tons CO2"	
	971.7 W	R 10/8	3/2004 12.7	<u> </u>	22.75	32.0	 		20.81	X 5	443		l		"144 bbls clean fluid, 19 tons CO2"	
	1049.4 I	U 6/2	8/2004 12.7 0/2005 16.2 8/2004 7.05 /2004	9	22.06	30.0	ļ	11.20	ļ		3,60		ļ <u>.</u>	L	"frac232 bbl clean fluid, 39 tons CO2"	
	1358.2 1	U 10/	8/2004 7.05	8.96 3	0.0			4.24 1.78 1	ļ <u></u>	X 1 X 2	9,05 4,49	! 			"frac359 clean fluid, 39 tons CO2" "frac359 clean fluid, 34 ton CO2" "CO2 frac 226 bbls total load"	
	1462.7 1	(U 9/3)	/2004	ļ	20.17	24.2	38.74	1.78 1	1.54	X 2	4,49	ļ 			"CO2 trac 226 bbls total loadrecovered 37 bbls of 226 bbl load."	
	1528.9 I	(U 9/2.	/2004		21.52	18.5	50.81		15.16	X 1	4,96)			raced down12,887 gai CO27OQpad volume 3932.6 gai total load 193 bolsblew rupture disk on	
															#1 CO2 pumprecoverd 41 bbls of 195 bbl load."	
42-10 762					46 12		ļ	8.32 2	1.04			595 14,	503 "To	tal load 8	6.1 bbls." Treatm ent report available for 2004 stimulation events.	Yes
	807.1 W	R 12/	15/2004	9.74 8	.27 13	.31		7.35		X 6	871				"Frac 122 bbls slickwater" From stimulation report posted 8/9/2013, 4351 gal 70Q CO2 WF12 consisted of	
	1005 XV	5 C/O I	(2001 12 92	<u></u> -	12.07	35.0	122.41	7.70			1075				4351 gal water and 34 lb J216."	
			/2001 12.82		12.07	30.0	12.41 15.51	7.70		X 9	,072 ,859				"fracFlush w/50Q CO2 foam"	·
	1034 FU	6/23/	2001 9.51 1 2001 6.16 1	0.31	 		11.89	6 10		$\frac{\Delta}{\nabla} \cdot \frac{\partial}{\partial x}$	072				"frac" No information on stimulation fluids. "frac" No information on stimulation fluids.	·-
	1202 FI	6/23/	2001 0.10 1 2001 10 16	0.09	13 51	35.0	13.44	7 36		$\frac{\Lambda}{X}$	1,34	,			"frac70Q CO2 foamtotal clean fluid 267 bbls."	
	1202 I C	6/22/	2001 10.16 2001 10.07		10.82	30.0	11.55	9.27		X		<u> </u>			"fracclean fluid 197 bbls"	··
	1256 FI	6/22/	2001 10.07 2001 6 52 1	R 44	10.32	36.0	10.00	6.83			525	í			"fracpumped 84 bbls clean fluid"	·
	1380 FI	6/22/	2001 5.52 1	0.51	 -	35.0	10.00 10.51	6.03		X 1		,			"fractotal clean fluid 302 bbls, 89.5 tons CO2"	··
	1448 FU	9/16/	2001 6.52 1 2001 5.80 1 1994	7.5.1		22.0	10.51	0.11		X	f::	í			In sundry notice dated 5/27/2005, "Acidize w/2000 gallons 15% NEFE, 2300# rock salt". WOGCC (2014)	
	1	2710	.,,,							1.					states "no treatment" at this depth.	
	1620 FU	6/13/	1994				†	·		X	付 `				"Perf 5315-39, 5389-5403', 5476-86acidize w/1250 gal 7 1/2% HCl acid (6/13/94). On 6/12/2001,	
															"Acidize - Stage 3 (5315-5339') Pump 750 gal 15% HCl750 gal 15% drop 48 balls, 700 gal & flush."	
		FU 6/	12/2001	· · · · · ·			1	1		Χ	1				"Stage 2 (5389-5403') Pump 700 gal 15% HCl, 250 gal 6% KCl w/28 frac balls, 700 gal 15% HCl"	
	1643				• •		· ·	l	·L	٠	J ·		·	<u> </u>	Stimulation at this interval not reported by WOGCC (2014).	
		FU 6/	2/2001	[]	[[X]		["Stage 1 (5476-5486) Pump 900 gal 15% HCl, 10 bbls 6% KCl, w/30 frac balls, 500 gal 15%" Stimulation a	it
	1669														this interval not reported by WOGCC (2014). Modified wellbore schematic available in WOGCC (2014).	
31-10 101					15.17			6.14		X 8	,211	1,412			reak w 6% kclstart 70Q foam 242 bbl, 80 b bl fluid, 29 ton co277 bbl 40Q flush"	Yes
			2002 10.69		14.48	35.0		8.27 6.03 8.80		X 1	2,52	7			"Break w 6% kclstart 70Q co2 foam, 405 bbl, 151.5 bbl fluid, 39 ton co2"flush w 84.5 bbl 6% kcl"	
			2002 12.07	L	15.86	35.0		6.03		X 2	0,55 0,70)	l	["Break w 6% kclstart 70Q co2, 695 bbl foam, 232 fluid, 74 ton co2flushed 50% co2 bbl."	
			2002 14.13		16.89	35.0		8.80			∮ ,70	1	ļ	<u> </u>	"Break w 6% kclstart 70Q co2 foam, 254 bbls fluid, 36 ton co2flush was 109.5 bbl 6% kcl."	
	1362 FU	6/22	1994							X					In sundry notice dated 5/28/2002, "Acid fraceach & all sets of perfs w/600 gals 7 1/2% HCl acid each	
															4770'-5478'."	
23-10 140	0 FU 7/	8/2000	9.10 6.03 3	0.0				7.03		X^{-2}	2,38	7		112,463 "	Pump 70Q CO2 foam fr ac3000 gals pad, 480 gals540 gals640 gals812 gals1200 gals3696	Yes
				L	<u> </u>		l	l	L	L	J		l	.	gals 50Q flush,,,pumped 226 bbls KCL, 47 ton CO2."	
			2000 14.92	L	8.27 2	8.5	 	4.27	ļ	X 1	2,51)	ļ	<u> </u>	"Pumped 70Q CO2 foam frac3000 gal pad, 1700 gal1840 gals2843 gals 50Q flush."	
	1620 FU									_	4,74				"500 gal 15% HCl" "Frac w/16500 gal plus 700 N2 foam."	
43-10 138	9 FU 2/	5/200	11.86		19.31	35.0		5.28		$X = \overline{2}$	1,89	606 28	,467 ''I		w/6% KCLFrac using 547 bbls 70Q CO2 foam, 125 bbls gel, 63 ton CO2flush w/30%	Yes
l					1	1	1	1							CO2."	

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (hum)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1467 FU	2/6/	002 11.24		17.24	35.0		5.16		X 2	8,931				"Frac-Break w/6% KCLFrac using 837 bbls 70Q CO2, 235 bbls gel, 95 tons CO2112 bbls 6% KCl flush."	
	1574 FU	2/6/	002	· 	20.34	34.0				X 1	5,941			· 	"Frac using 457 bbls 70Q foam, 130 bbls gel, 52 ton CO2flush w/120 bbls 6% KCl."	
	1597 FU 1623 FU		2002 2002 20.48 /1994		24.13 19.31	32.0		14.89 19.54		X 1 X	9,59				"Frac using 545 bbls 70Q CO2156 bbls gel, 61 ton CO2flush w/124 bbl 6% KCl." Sundry notice dated 2/19/2002, "Picke tbg w/600 gal 15% acid. Spot 250 g 15% NEFE acidpress tbg to 5300 psi w/N2Pump 20 mcf N2 @ 2100 scfm @ 2800 psi" WOGCC (2014) indicates no stimulation at	
	1678 FU	1/26	/2002		16.41	50.0		7.93		Y 3	0,551 0,551			·	this depth. "Frac-total pumped 317 bbls KCl, 598 bbls CO2"	
33-2 432.					10.71	50.0		1.23				0		1.263 "0	Coll frac104 bbls clean fluid, 41300 scf of N2."	No
1	552.3 W	R 10	18/2000							X 4	,245 ,954	·			"Coil frac93 bbls clean fluid, 43300 scf of N2."	
	605.6 W	R 10	18/2000 18/2000							X 1	0 .870)	["Coil frac177 bbls clean fluid, 961000 scf of N2"	
	624.5 W	R 10	18/2000	. .	ļ	ļ				X 1	3,52	; ;		↓	"Coil frac139 bbls clean fluid, 77100 scf of N2"	
	644 WF	10/1 IR 10	8/2000 18/2000							X 1					"Coil frac206 bbls clean fluid, 124200 scf of N2" "Coil frac126 bbls clean fluid, 78000 scf of N2"	
	715.1 W	R 10	18/2000 18/2000	·	 -		†	<u> </u>		X 1	,698 2,701 7,049		h	· -	"Coil frac183 bbls clean fluid, 115800 scf of N2"	
	750.1 W	R 10	18/2000							X 1	7,04)	†		"Coil frac254 bbls clean fluid, 162300 scf of N2"	
	776.6 W	R 10	18/2000							X 1	2,92	7	["Coil frac317 bbls clean fluid, 83800 scf of N2"	
	849.2 W	R 10	21/1994							X	 ⊦				"Acidizew/300 gals 15% NEFE"	
	862 WF 904.3 W	R 10	7199 4 21/1994	·						X X	┨╌╌┼			· -	"Acidizew/300 gals 15% NEFE" "Acidizew/300 gals 15% NEFE"	
23-1 810.					11.40	5.0.1	2.34	5.38		X			0	480	"Spot & pump 400 gal 15% NEFEgained 30.48 bbls in 72 hrs 15,000 ppm chl."	No
			13/1994		12.25	5.0 1				X X X	11				"Spot & pump 400 gal 15% NEFE"	
	907.1 W	R 10	13/1994		11.07	16.7	6	5.38 7.93		Χ			["Spot & pump 400 gals 15% NEFE"	
	1393 FU				17.33		0	6.23		X	 -		ļ		"Pump 500 gals 15% NEFE"	
41-15 163	1526 FU				21.28		-	7.96 40.09		X	h 745	255.67	100.0	15001	"Spot & pump 500 gals 15% NEFE." \$% NEFE-PB", "fr ac w/16,600 gal 65Q N2 foam."	NT.
	1897 FU				10.34	3.03	9.09	40.09		X	# <u>- / 4 </u>	2 333 62	192	1300 gai	2000 gal 15% NEFE-PBgained 3.34 bbl in 1 hr(11,000 ppm chl)"	No
43-6 287.				 • •	6.62 6.	.0		1.57		X			0	1.062 30	Q gal "7.5% HL w/mutual solvent, HC2 surfa ctant, flush 4% KCl"	No
	359.1 W				8.55 6.		1	4.24 4.92		Χ	11				400 gal "7.5% HL w/mutual solvent, HC2 surfactant, flush 4% KCl"	
	379.2 W				13.79	6.5		4.92	[Χ					150 gal "7.5% HL w/mutual solvent, HC2 surfactant, flush 4% KCl"	
	476.1 W				12.07			5.54		X					250 gal 7.5% HL w/mutual solvent, HC2 surfactant, flush 4% KCl"	
	548.6 W 575.5 W	IK 8/1	0/1999 0/1000		12.07 12.76			4.08 4.59		X X X X	{ ⊦				1000 gal "7.5% HL w/mutual solvent, HC2 surfactant, flush 4% KCl" 1000 gal 7.5% HL w/mutual solvent, HC2 surfactant, flush 4% KCl"	
	723 6 W	R 8/4	/1999	· 	12.70	0.0	†	7.38		X 2	1,387	,	 	· -	"clear frac"	
	751.6 W	R 8/4	/1999]	1	7.38 8.61		X 1	8,079)	İ	["clear frac"	-
	1055 W	R 5/2	3/1995							Χ				<u> </u>	"Pmp 100 gals 15% HCl acid & 95, 180 SCF/N2"	
23-11 50	7.2 WR	0/14/	2000							X 4	975	88 208			"Coil frac81 bbls clean fluid, 34600 scf N2"	No
	522.1 W	R 10	14/2000 14/2000	. 	 -	 -	ļ	ļ		X 2	0,936				"Coil frac282 bbls clean fluid, 141000 scf N2" "Coil frac119.5 bbls clean fluid, 59400 scf N2"	
	554.1 W	(K 10. (R 10.	14/2000 14/2000	· -	 -	 	 	 		А / Х 7	976 976		 	· -	Coil frac119.5 ddis clean fluid, 59400 scf N2" ["Coil frac117 bbls clean fluid, 64100 scf N2"]	
	739.7 W	R 10	14/2000	·			†			X 5	0,936 ,967 ,976 ,993 ,617		<u> </u>	·†	"Coil frac117 bbls clean fluid, 64100 scf N2" "Coil frac96 bbls clean fluid, 62100 scf N2"	
	792.2 W	R 10	12/2000]	1	l	 	X 9	617		t		"Coil frac136 bbls clean fluid, 10700 scf N2"	

802.5 WR 10 12/2000	
1 11103 EH 3/2/2005 4 94	
1 11103 EH 3/2/2005 A 9/A	
1 11103 EU 3/2/2005 4 94	
1159 FU 2/23/2005 11.03 3.72 X 13.114 "Frac: 9348 bbls 60Q"	
1358 FU 3/6/1998	
1403 FU 12/17/1997 X "Acidize w/500 gal 15% HCl, flush w/brine"	
1 1458 FU 12/4/1997	
1558 FU 11/25/1997 X "Acidize w/500 gal 15% HCl"	
1558 FU 11/25/1997 X "Acidize w/500 gal 15% HCl"	
[1653 FU 11/2 1/1997 X "Acidize w/500 gal 15% HCl"	
31-11X 2828 C 10/22/1998	00 gallons No
13X-3 41 0.9 WR 2/18/1999 7.58 1 5 5.40 X 0 0 "Acdw/400 gal 15% HCl" 527.3 WR 2/18/1999 3.79 1 5 3.25 X "500 gal HCl" 584 WR 2/18/1999 9.24 1 6 7.65 X "Acdw/300 gal HCl"	
584 WR 2/18 1999 9.24 1.6 7.65 X "Acdw/300 gal HCl"	
676.7 WR 2/18/1999 X "Acdw/250 gal"	
689.2 WR 2/18/1999 5.52 1.5 4.73 X	
1179 FU 2/15/1999	
1489 FQ 2/9/1999	
1510 Ft 2/9/1999 6.35 X 500 gai HCl" 1558 Ft 2/9/1999 2.95 X 500 gai HCl"	
42X-9 FU 100 10 083 Completed in Fort Union Formation. Information on perforations and stimulation missing from completion report.	well No
41-11 602.3 WR 2/1/1999 X 0 207 "Acidizew 1100 gallons 15% HCl"	No
622.1 WR 2/1/1999 6.41 1.61 X "Acidizew/300 gallons 15% HCl each [perforated interval] (600 gals total)"	
648.6 WR 2/1/1999 6.48 1.50 X "Acidizew/300 gallons 15% HCl each [perforated interval] (600 gals total)" 793.7 WR 1/2/8/1999 11.89 8.84 3 8 13.66 X "Acidize w/1500 gallons 15% HCl"	
793.7 WR 1/28/1999 11.89 8.84 3 8 13.66 X "Acidize w/1500 gallons 15% HCl" 1033 Ft 1/21/1999 12.41 4.1 0.85 X "Acidizew/500 gallons 15% HCl"	
41-11 602.3 WR 2/1/1999	
1183 FU 1/21/1999	
1183 Ft 1/21/1999	
33-10 64 0 .4 WR 1/5/2005 11.29 13.13 24	Yes
33-10 640,4 WR 1/5/2005 11.29	
756.5 WR 1/4/2005 13.29 10.74 23.5 8.69 X 10.886 "32.6 tons CO2, 148 bbls 6% KCl" 1146 FU 1/4/2005 12.40 8.05 3.99 X 9.525 "170 bbls 6% KCl, 28.6 tons CO2"	

	Avgerage Flow during Stimulation (bom) Max Pressure During Stimulation (MPa) Instantaneous Shut-In Pressure (Mpa) Fracture Gradient (Mpa/km) Hydraulic Fracturing Acid Stimulation	Proppant (kg or sxs sand) Oil Produced Water (bbls) Produced Water (bbls) Bescription of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File
1192 FU 1/4/2005 9.20 1562 FU 4/20/1999 12.14 1637 FU 4/12/1999 13.55	6.12 X 6.763 33.0 15.55 10.84 X 25.0 10.45 X 24.902	"71.2 bbls CO2" "Frac w/35# liner [linear] gel & 70% CO2 foam. Total fluid pmped 10,235 gals & 76.5 tons CO2." "Acidize w/1500 gal 15% HCl. Frac35# linear gel w/70% CO2total fluid pmped 13,754 gal. Total CO2 68 tons."	
33-3 137 2 FU		0 337 Perforated intervals in Wind River and Fort Union Formations. Production from Wind River Formation. Information on stimulation missing.	No
1214 FU 3/9/1999 6.34 10 34 1322 FU 3/5/1999 1361 FU 3/5/1999	5.0 6.72 X X S S S S S S S S	1 1,663 "Adidizew/500 gals 15% HCl"	No
32-10 16 7 FU 5/12/2000 7.58 23 1661 FU 5/3/2000	5.0 4.62 X 4.94 X	29 2,200 "Frac w/24,096 gal CO2 foam " "Acidize w/1000 gal 7.5% HCl, flush 909 gals 4% KCL. Frac w/16054 gals 70Q CO2 foam." ISIP for acid stimulation = 0.94 Mpa.	Ye
13-11 764.4 WR 2/21/2001 16.55 807.1 WR 2/21/2001 15.86 849.8 WR 2/20/2001 16.55 1103 FU 2/20/2001 7.58 23	25.0 8.58 X 30.0 9.24 X	Stitutation = 0.94 Mpa.	No

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation Stimulation Date		Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (hpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
		2/20/2001 2/15/2001 1	1.72		20.68 9.65 2.			7.38		X X					"Fracusing 174.5 bbls wf 135 in 6% KCl wtr w/10% methanol + adds, 40 tons CO2433 bbls 70Q CO2 foam. Flush w/69 bbls 6% kcl wtr w/10% methanol"	
21-13 504	.1 WR 2	/17/2001 11. R 2/17/2001 R 2/17/2001	.38 18.62	2	11.72 17.93 15.17	30.0 30.0		8.27 8.96 11.58		X 1	0,886 9,504 9,051	1		1,422 "F1	hcusing 98 bbls wf 135 in 6% kcl water w/10% methanol + adds, 28 tons CO2275 bbl 70Q CO2 foam. Flush w/33 bbls 6% kcl w/10% methanol." "Fracusing 170 bbl Wf 135 in 6% kcl water w/10% methanol + adds, 50 tons CO2 488 bbls 70Q CO2 foam. Flush w/33 bbls 6% kcl w/10% methanol." "Fracusing 174 bbl wf 135 in 6% KCl water w/10% methanol + adds, 51 tons CO2264 bbls 70Q CO2 foam. Flush w/41 bbls 6% kcl wtr w/10 % methanol."	Yes
	603.5 W	R 2/23/2001 R 2/23/2001 R 2/23/2001 R 2/23/2001			0.97 33 12.82 11.03 14.24	27.0 21.0		6.83 7.79 8.14 10.76		X X X			0	97	"Fracusing 298 bbls wf 135 in 6% KCl water w/10% methanol + adds, 106 tons CO21000 bbls 70Q CO2 foam. Flush w/25 bbls 6% kcl w/10% methanol."Fracusing 174 bbl wf 135 in 6% KCl water w/10% methanol + adds, 51 tons CO2264 bbls 70Q CO2 foam. Flush w/41 bbls 6% kcl wtr w/10 % methanol." "Frac159 bbls wf 135 in 6% KCl water w/10% methanol + adds, 50 tons CO2496 bbls 70Q CO2 foam. Flush w/30.5 bbls 6% kcl water w/10% methanol." "Fracusing 156 bbls wf 135 in 6% methanol [typo 6% kcl water w/10% methanol?] + adds, 43 tons CO2452 bbls 70Q CO2 foam. Flush w/38 bbls 6% KCl w/10% methanol." "Fracusing 209 bbls wf 135 in 6% kcl wtr w/10% methanol + adds, 67 tons CO2661 bbls 70Q CO2 foam. Flush w/46 bbls 6% kcl w/10% methanol."	No
	569.7 W 671.2 W 766.6 W 805.9 W 856.8 W	11/2002 13.5 R 1/10/2002 R 1/10/2002 R 1/10/2002 R 1/10/2002 R 1/9/2002 R 1/8/2002 2	23.84 23.69 24.82 24.13 21.68) }	12.55 22.75 22.75 19.99 15.17 17.93 47.57	32.0 29.0 25.0 30.0		6.21 8.36 7.84 7.10 9.38 9.97 9.84		X X X X X			0	1,333 "F1	actotals pumped 104 bbls KCl, 153 bbls CO2" "Fractotals pumped 121 bbls KCl, 245 bbls CO2" "Fractotals pumped 122 bbls, 192 bbls CO2" "Fractotals pumped 160 bbls KCl, 280 bbls CO2" "Fractotals pumped 95.6 bbls CO2, 136.6 bbls KCl" "Frac using 75Q foamtotals pumped 158 bbls CO2, 131 bbls KCl" "Frac using 75Q foamtotals pumped 70Q foam pad 50Q san stagesTotals pumped 125 bbls KCl, 120 bbls CO2"	No
24-1 432.	2 WR 3/	23/2001											0	817	Producing in Wind River Formation. Six perforated intervals from 1418' to 2964'. No information provided on stimulation.	No
	535.8 W 648 WR 856.5 W	23/2001 R 3/23/2001 3/23/2001 R 3/22/2001 R 3/20/2001			9.26 22 9.65 2 12.89 8.69 2 15.72	4 21.9 0		5.45 5.86 8.14 7.29		X X X			0	102	"Fracusing 165 bbls wf 130 in 6% kcl water w/10% methanol + adds, 39 tons CO2458 bbls 70Q CO2 foam. Flush w/18 bbls 6% kcl water w/10% methanol." "Fracusing 153 bbls wf 130 in 6% Kkcl water w/10% methanol + adds, 35 tons CO2398 bbls 70Q CO2 foam. Flush w/27 bbls 6% kcl water w/10% methanol." "Fracusing 105 bbls wf 130 in 6% kcl w/10% methanol + adds, 21 tons CO2232 bbls 70Q CO2 foam. Flush w/32 bbl 6% kcl water w/10% methanol." "Fracusing 144.4 bbls wf 130 in 6% KCl water w/10% methanol + adds, 29 tons CO2333 bbls 70Q CO2 foam. Flush w/43.8 bbl kcl water w/10% methanol." "Fracusing 177.3 bbls wf 130 in 6% kcl w/10% methanol + adds, 38 tons CO2332 bbls 70Q CO2 foam. Flush w/46 bbls 6% kcl w/10% methanol."	
34-2 385.		20/2001 R 3/17/2001			8.46 18 10.85			6.00 7.58		X X			0	414	"Fracusing 92.1 bbls wf 130 in 6% kcl w/10% methanol, 20 ton CO2228 bbls 70Q CO2 foam. Flush w/18.5 bbls 6% kcl w/10% methanol. "Fracusing 70.8 bbls wf 130 in 6% kcl w/10% methanol, 14 ton CO2149 bbls 70Q CO2 foam. Flush w/23.5 bbls 6% kcl w/10% methanol."	No

.

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bum)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	497.4 W	R 3/1	7/2001		7.47 1	8.0		5.10		X					"Fracusing 75.9 bbls wf 130 in 6% kcl w/10% methanol + adds, 14 ton CO2160 bbls 70Q CO2 foam.	
	554.7 W	R 3/1	7/2001		10.98	19.0		7.58		X	╂┼		 		Flush w/24 bbls 6% kcl water w/10% methanol." "Fracusing 85.2 bbls wf 130 in 6% kcl water w/10% methanol + adds, 19 ton CO2180 bbls 70Q CO2	
	600.0 11	D 371	7/2001		10-01	31.0			ļ		ļļ		ļ		foam. Flush w/28 bbls 6% kcl water w/10% methanol."	
	609.9 W	K 3/1	7//2001		10.81	21.0		8.02		X					"Fracusing 175.3 bbls wf 130 in 6% kcl w/10% methanol + adds, 47.7 ton CO2460 bbls 70Q CO2 foam. Flush w/31 bbls 6% kcl water w/10% methanol."	
	648.6 W	R 3/1	7/2001		7.11 2	2.0	1	6.57		Х	11				"Frac using 136.3 bbls wf 130 in 6% kcl water w/10% methanol + adds, 31 tons CO2335 bbls 70Q CO2	
	714.5 W	R 3/1	6/2001		7.08 2	2.0		5.72		x ·	{ ∤		 		foam. Flush w/33 bbls 8% kcl water w/10% methanol." "Fracusing 190 bbls wf 130 in 6% kcl w/10% methanol + adds, 51.2 ton CO2498 bbls 70Q CO2 foam.	
]		J	l	l	L		<u> </u>		ļ		Flush w/36 bbls 6% kcl w/10% methanol."	
	793.1 W	R 3/1	5/2001		13.44	20.0		8.89		X					"Fracusing 134 bbls wf 130 in 6% kcl w/10% methanol + adds, 21.5 ton CO2242 bbls 70Q CO2 foam. Flush w/40 bbls 6% kcl w/10% methanol."	
	843.1 W	R 3/1	5/2001		10.24	22.0		7.89		X	 				"Fracusing 86 bbls wf 130 in 6% kcl w/10% methanol + adds, 17 ton CO2157 bbls 70Q CO2 foam.	
	122222									<u>.</u>	<u> </u>		ļ		Flush w/43 bbls 6% kcl water w/10% methanol."	
	900.4 W	R 3/1	5/2001		12.35	23.7		8.20		X					"Fracusing 128.4 bbls wf 130 in 6% kcl w/10% methanol + adds, 31 ton CO2283 bbls 70Q CO2 foam. Flush w/46 bbls 6% kcl w/10% methanol."	
	986.6 W	R 3/1	5/2001		10.81	30.0		7.54		х	11				"Fracusing 105 bbls wf 130 in 6% kcl w/10% methanol + adds, 20 ton CO2192 bbls 70Q CO2 foam.	11
12-6													lo.	1 (0(D.	Flush w/50 bbls 6% kcl water w/10% methanol."	No
12-6													U	1,080 PI	oducing from Wind River Formation. Information on perforation and stimulation missing from well completion report	NO
44-1		WR											0	1,375 Pr	oducing fro m Wind River Formations (8 perforated intervals). Information on stimulation missing from	No
14-10 63	9.5 WP	4/11/	2001		14.09	21.0		8.27		Y 1	0.56	3,678		3 225 "E	well completion report. recusing 102.8 bbls wf 130 in 6% KCl w/10% methanol + adds, 24 tons CO2219 bbls 70Q CO2	No
14-10 02			<u>.</u>					0.27			,50	7 3,070		5,225 1	foam Flush w/31 bbls 6% kcl water w/10% methanol "	110
	662 WR	4/11/	2001		10.81	20.4		6.89	[X 1	1,11	5	["Fracusing 112.6 bbbls wf 130 in 6% KCl w/10% methanol + adds, 25 tons CO2219 bbl 70Q CO2]]
	872.3 W	R 4/1	1/2001		9.83 20	0.5		7.31		X 2	0 ,342	2			foam. Flush w/42.2 bbls 6% kcl water w/10% methanol." "Fracusing 171.6 bbls wf 130 in 6% KCl water w/10% methanol + adds, 42 tons CO2397 bbls 70Q CO2	2
]					ļ		l	<u></u>	ļ 	<u> </u>		ļ <u>.</u>		foam. Flush w/44.5 bbls 6% kcl water w/10% methanol."	
	931.5 W	R 4/1	1/2001		17.03	20.0		8.62		X 1	0,45	ļ			"Fracusing 121.6 bbls wf 130 in 6% kcl water w/10% methanol + adds, 24 tons CO2224 bbls 70Q CO2 foam. Flush w/47 bbls 6% kcl water w/10% methanol."	
13-15 65	1.1 WR 5	/17/2	001 15.86		9.91 2:	5.8		8.76		X 1	3,21	3 0		0	"Fracusing 120.2 bbls Wf125 in 8% KCl with 10% methanol, 38 tons CO2277 bbls 80Q, 75Q, 70Q, and	i No
	 	TS 271	7/2001 5 60 5					 	ļ		ļ.,,ļ		ļ		60Q CO2 foam. Flush w/49 bbls 6% KCL w/10% methanol" "Fracusing 140.3 bbls Wf 125 in 8% KCl with 10% methanol, 45 tons CO2325 bbls 80Q, 75Q, 70Q,	
	/54.7 W	K 5/1	7/2001 5.60	7.74 23	.8			4.48		X I	6,44	2			"Fracusing 140.3 bbls Wt 125 in 8% KCl with 10% methanol, 45 tons CO2325 bbls 80Q, /5Q, /0Q, and 60Q CO2 foam. Flush w/56.5 bbls 8% KCl w/10% methanol"	
	893.1 W	R 5/1	7/2001 8.96	3.51 26	5.8			7.97		X 1	3,09)			"Fracusing 138.9 bbls Wf 125 in 6% KCl with 10% methanol, 36 tons CO2270 bbls 80Q, 75Q, 70Q, &	11
	1048 W	D 5/1	5/2001 7.76 6	47.27	0			4.83		 V 1] 3,291	,	ļ		60Q CO2 foam. Flush w/67 bbls 6% KCl w/10% methanol" "Fracusing 153.6 bbls Wf 125 in 6% KCl w/10% methanol, 38 tons CO2277 bbls 80Q, 75Q, 70Q, and	
	1070 11	X 3/ 1	J/2001 7.70 U	·. - 7 - 2 /	.0			7.03		2. 1	1,27				60Q CO2 foam. Flush w/79 bbls 8% KCl w/10% methanol"	
12-11W	70.8 WI	R 5/3/	2001 11.86		9.07 2	4.7		6.87		X			0	460	"Fracusing 144.2 bbls wf 125 in 6% KCl water + adds, 37 tons CO2290 bbls 70Q CO2 foam. Flush w/5	Yes
	843.4 W	R 5/3	/2001 2.76 7.	51 21.	5			6.62		x					bbls 6% KCl w/10% methanol" "Fracusing 120.4 bbls wf 130 in 6% kcl water w/10% methanol + adds, 25 tons CO2180 bbl 70Q CO2 foam. Flush w/63 bbls 6% KCl water w/10% methanol."	

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	864.1 V	VR 5/	2/2001 15.17		10.14	22.4		7.69		X					"Fracusing 116.7 bbls wf 130 in 6% KCl water w/10% methanol + adds, 22 tons CO2 170 bbls 70Q	
	883 3 7	J MR 5/	2/2001 9.79 1	4 11		23.0	 	7.98		X	{			 	CO2 foam. Flush w/65 bbls 6% KCl w/10% methanol." "Fracusing 131.2 bbls wf 130 in 6% KCl w/10% methanol + adds, 24 tons CO2223 bbls 70Q CO2	
						23.0		7.56		^					foam. Flush w/66 bbls 6% KCl water w/10% methanol."	
	923.2 V	VR 5/	2/2001 7.24 1	0.99		20.0	1	7.72		Χ	1				"Fracusing 146.4 bbls wf 130 in 6% KCl water w/10% methanol + adds, 27 tons CO2251 bbls 70Q CO2	
2.4.20.72	ok a num	- / 4 / 2	do1		10.50	21.2		0.06		77			2	1 150 110	foam. Flush w/69 bbls KCl water w/10% methanol."	T 7
34-3R 72	26.3 WR	5/4/2	001		10.72	21.2		8.96		X			2	1,153 "St	art frac & pump 86 bbl 80 Q CO2 foamLeak on wellhead. Flush w/37 bbl kcl waterStart to frac againLeak on wellhead againFrac using 67.7 bbl wf 125 in 6% kcl water w/10% methanol + adds, 16	Yes
															tons CO2119 bbl 80Q CO2 foam. Flush w/37 bbl 6% kcl water w/10% methanol."	
	773.6 V	VR 5/	4/2001	ļ	11.13	22.6	1	7.93		Χ					"Fracusing 101.6 bbls wf 130 in 6% kcl w/10% methanol + adds, 24 tons CO2207 bbls 70Q CO2 foam.	
	1000.00	 050- 77	4/2001 16.84	ļ	 			6.22	ļ		ļ		ļ	ļ	Flush w/39.4 bbls 6% KCl water w/10% methanol." "Fracusing 127.4 bbl wf 130 in 6% KCl water w/10% methanol + adds, 33 tons CO2288 bbl 70Q CO2	
	809.2 \	VK 5/	4/2001 16.84		13.48	27.2		8.55		X					"Fracusing 127.4 bbl wf 130 in 6% KCl water w/10% methanol + adds, 33 tons CO2288 bbl /0Q CO2 foam. Flush w/41.3 bbls 6% KCl water w/10% methanol"	
	842.5 V	VR 5/	4/2001 13.93		13.33	24.0	 	8.69		X	 		<u> </u>		"Fracusing 108.8 bbl wf 130 in 6% KCl water w/10% methanol + adds, 29 tons CO226 bbls 70Q CO2	
				L				l	L	L	<u> </u>		l	L	foam. Flush w/43 bbls 6% KCl water w/10% methanol."	
	942.7 V	VR 5/	4/2001		11.84	21.5		9.65		X					"Fracusing 103.6 bbls WF 130 in 6% KCl water w/10% methanol + adds, 22 tons CO2170 bbl 70Q CO2	1
11 11 10	darite	(b.1./0./	h1 14 12		10.05	21.2		0.45		37. 0	A 01:	2.0		0.051.85	foam. Flush w/48 bbls 6% KCl water w/10% methanol"	X 7
11-11 10	044 FU 3	/81/20	01 14.13		19.85	31.3		9.45		X 2	0,81	80		9,051 "Fr	acusing 161.2 bbls Wf 125 in 6% KCl water w/10% methanol, 45 tons CO2441 bbls 70Q & 60Q CO2 foam. Flush w/50 bbls 50% CO2 & 50% - 6% KCl water w/10% methanol."	Yes
	1169 F	5/3	1/2001		20.68	28.7	†	5.17		X 2	,88	i			"Frac using 200.3 bbls Wf 125 in 6% KCl water w/10% methanol. 50 tons CO2 466 bbls 700 & 600	
	1	<u> </u>	ļ	L	<u> </u>		<u> </u>			L	<u> </u>				CO2 foam. Flush w/58.5 bbls 6% KCl water w/10% methanol."	
	1238 F	5/3)/2001 24.82		18.73	22.2		13.44		X 1	\$,70	3			"Fracusing 178.5 bbls Wf 125 in 6% KCl water w/10% methanol, 41 tons CO2372 bbls 70Q & 60Q CO2 foam. Flush w/62.5 bbls 6% KCl water w/10% methanol."	
	1358 F	5/30) 2001 9.31 1	5.32	 	22.3		10.82		X 1	2.14				"Fracusing 153.1 bbls Wf 125 in 6% KCl water w/10% methanol, 28 tons CO2262 bbls 70Q & 60Q	
								10.02		1	[, '	,			CO2 foam. Flush w/68 bbls 6% KCl water w/10% methanol."	
	1380 F	J 5/1	1/2001 24.34		21.35	24.0	1	1		X 1	6,59	4			"Fracusing 85.2 bbls Wf 125 in 6% KCl water w/10% methanol + adds, 45 tons CO2334.8 [bbls] 80Q,	
	1204 E	 	1/2001 24.61	ļ	15.49	25.4	ļ- <u>-</u>	9.85	<u></u> -	X 1	<u> </u>	,	ļ <u>-</u> -		75Q, 70Q & 60Q CO2 foam. Screened out." "Fracusing 136.2 bbls Wf 125 in 6% KCl water w/10% methanol + adds, 38 tons CO2258 bbls 80Q,	
	1394 F	0 3/1	1/2001 24.61		13.49	23.4		9.83		A 1	7,20	/			75Q, 70Q & 60Q CO2 foam. Flush w/70 bbls 6% KCl water w/10% methanol."	
	1467 F	5/9/	2001 20.51	 -	15.55	28.5	1	8.41		X 1	8,03	3	†		"Fracusing 178 bbls Wf 125 in 6% KCl water w/10% methanol + adds, 58 tons CO2417 bbls 80Q, 75Q	
															70Q & 60Q CO2 foam. Flush w/70 bbls 6% KCl water w/10% methanol."	
12-5 571	.2 WR 5				12.41			6.50		Х			0	3,402 "Fr	acusing 45.5 bbls 6% KCl w/10% methanol + 40 bbls CO2"	No
	609.6 V	VR 5/	22/2001		13.48	31.0		7.63		X 1	5,29	l			'Fracusing 134.4 bbls WF125 in 6% KCl w/10% methanol, 40 tons CO2332 bbls 70Q & 60 CO2 foam. Flush w/30.8 bbls 6% KCl water w/10% methanol."	
	665.4 V	VR 5/	22/2001		15.55	29.4	 	7.72		X 1	1.78	3	 		"Fracusing 119 bbls WF125 in 6% KCl w/10% methanol, 32 tons CO2267 bbls 70Q & 60Q CO2 foam.	
	J	J	1	L					L				l	L	Flush w/33.7 bbls 6% KCl w/10% methanol:"	
	748.9 V	VR 5/	22/2001	[15.50	28.3]	7.93	[X 1	0,38)	[["Fracusing 104.4 bbls 125 in 6% KCl w/10% methanol, 21 tons CO2209 bbls 70Q & 60Q CO2 foam.	
	820 1 3	J MB 27	21/2001		9.65 3.	h	 	6.34		X 0			ļ	·	Flush w/38 bbls 6% KCl water w/10 % methanol" "Breakdown perfs w/6% KCL, 35 bblsstart ball sealers. Pump48 bbls 6% KCLFlush w/17 bbls 6%	
	029.1 \	VIX 2/	21/2001		7.00 3.	.0		0.34		<u>۱</u> ۷					KClNo gas."	
13-12 66	1.4 WR	6/1/2	001		11.64	21.7	12.27	8.41		X 8	504	0		221	"Fracusing 87.9 bbls wf 125 in 6% KCl water w/10% methanol, 21 tons CO2170 bbls 70Q & 60 Q CO2	Yes
											1				foam. Flush w/33 bbls 6% KCl water w/10% methanol"	

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	706.2 W	R 6/1	/2001		10.92	26.4	18.96	7.27		X 1	4,98)			"Fracusing 135.2 bbls wf 125 in 6% KCl water w/10% methanol, 35 tons CO2323 bbls 70Q & 60Q CO2 foam. Flush w/36 bbls 6% KCl water w/10% methanol"	
	755 WR	6/1/2	001		13.72	17.9	19.22	9.50		X 5	377			·	"Fracusing 76.1 bbls wf 125 in 6% KCl water w/10% methanol, 14 tons CO2118 bbls 70Q & 60Q CO2	
	841.6 W	R 6/1	/2001		16.89	26.3	17.58	7 87		X 1] 2.31			·	foam. Flush w/38.5 bbls 6% KCl water w/10% methanol" "Fracusing 125.4 bbls wf 125 in 6% KCl water w/10% methanol, 24 tons CO2258 bbls 70Q & 60Q	
				L			l	l	ļ	L	السال				CO2 foam. Flsuh w/43 bbls 6% KCl water w/10% methanol"	
	878.7 W	R 6/1	/2001		14.15	20.8	18.13	10.07		X 8	3335				"Fracusing 102.6 bbls wf 125 in 6% KCl water w/10% methanol, 21 tons CO2180 bbls 70Q & 60Q CO2 foam. Flush w/45 bbls 6% KCl water w/10% methanol"	
	905.6 W	R 5/3	1/2001		17.33	23.4	17.58	10.10		X 1	4,71	;			"Fracusing 145.4 bbls wf 125 in 6% KCl water w/10% methanol, 35 tons CO2320 bbls 70Q & 60Q CO2 foam. Flush w/46.5 bbls 6% KCl water w/10% methanol"	
34-11		WR											2	1,227 Pro	ducing fr om Wind River Formation with 9 perforated intervals. Information on stimulation missing from well completion report.	No
13-1		WR											0	309	Produced in Wind River Formation (7 perforated intervals). Information on stimulation missing from well completion report.	No
11-12 571	.8 WR 8 655.9 W	/3/20 R 8/3)1 /2001		12.07 12.07 10.72 16.24	25.0 25.0		7.45		X 9 X 1),245 0,17	0		63	"Frac70Q CO2 foam68 bbls KCl, 113 bbls CO2" "Frac70Q CO2 foam87 bbls KCl, 117 bbls CO2"	No
	655.9 W 689.5 W 785.2 W	R 8/2	/2001		10.72	25.0		7.45 7.13 8.87		X 1	1,83 3,51	,			"Frac-pump 70Q CO2 foam88 bbls KCl, 152 bbls CO2"	
	783.2 W 922.9 W	R 8/1	/2001		16.24 17.24	30.0		9.13			,233			· 	"Frac-pump 70Q CO2 foam121 bbls KCl, 183 bbls CO2" "Frac-pump 70Q foam92 bbls KCl, 99 bbls CO2"	·
21-10 13:	0 FU 8/	8/200			24.13 25.86	30.0		9.10 6.88		X 1	4,89 23,97			9,066 "F	ac-Breakdown w/8 bbl s KClPumped 70Q CO2 foam frac using145 bbls KCl, 228 bbls CO2" "Frac-Breakdown w/4 bbls KClPumped 70Q CO2 foam frac using226 bbls KCl, 316 bbls CO2".	No
	1447 FU	8/8/2	001 7.54 17	93		30.0	1	2.59 3.48		X 1	0 ,97		<u> </u>		"Frac-Breakdown w/3 bls KClPumped 70Q CO2 foam frac uisng144 bbls KCl, 139 bbls CO2"	
	1471 FU	8/8/1	001 20.45 001 19.04		26.20	35.0		3.48		X 1	0,97 3,75 ,832	, 		.	"Frac-Breakdown w/60 bbls KClPump with 70Q CO2 foam frac using162 bbls KCl, 172 bls CO2" "Frac-Breakdown w/29 bbls 6% KClPumped 70Q CO2 frac using141 bbls KCl, 146 bbls CO2"	
			2001 18.37							X 9),596				"Frac-Breakdown w/12 bbls 6% KClPumped 70Q CO2 frac using 74 bbls 6% KCl126 bbls CO2screened out w/6 bbls of the 4 PPA & 32 bbls of 6 PPA left in csg. Pumped 70.4 bbls 6% KCl &	
	1666 FU	7/31	2001 10.58		,			ļ		X 2	0,16				screened out again". "Frac-Breakdown w/16 bbls 6% KCl Pumped 70Q CO2 foam using 204 bbls 6% KCl242 bbls CO2"	
			2001 8.96					3.45		X 0					"Pump 10 bbls 8% KCl into formation"	
43-1 622.	7 WR 9/	1/200	1 11.72		13.84	20.2		7.58		Χ 6	976	12 8,50) "Frac	using 6	9.2 bbls W F 125 in 6% KCl water, 15 tons CO2147 bbls 70Q and 60Q CO2 foam. Flush	No
	662.6 W	R 9/1	/2001		12.87	19.8		7.33		X 8	3,264		ļ		w/31 bbls 6% KCL water" "Fracusing 79.4 bbls WF 125 in 6% KCl water, 20 tons CO2174 bbls 70Q and 60Q CO2 foam. Flush w/33.5 bbls 6% KCL water"	
	689.2 W	R 8/3	1/2001		14.21	24.2		7.28		X 9	508				"Fracusing 89.1 bbls WF 125 in 6% KCl water, 23 tons CO2222 bbls 70Q and 60Q CO2 foam. Flush w/35 bbls 6% KCL water"	
	760.8 W	R 8/3	1/2001 8.96	17.21		27.7		8.69		X 1	6,48)			"Fracusing 124.8 bbls WF 125 in 6% KCl water, 41 tons CO2357 bbls 70Q and 60Q CO2 foam. Flush w/39 bbls 6% KCL water"	
	885.7 W	R 8/2	9/2001 13.6	<u> </u>	15.32	24.4		11.45		X 1	4,42	,			"Fracusing 112.1 bbls WF 125 in 6% KCl water, 32 tons CO2289 bbls 70Q and 60Q CO2 foam. Flush w/45 bbls 6% KCL water"	
33-1													0	3,176 Pro	ducing in W ind River Formation (10 perforated intervals). Information on stimulaton missing from well completion report.	No

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
12-7													0	118	Producing in Wind River Formation (6 perforated intervals). Information on stimulation missing from well completion report.	No
21-10W	585.5 W 645.9 W	<u> </u>	l		18.02 15.44			8.80 8.62		X 1	6,24 2,67			21,102 '	Fracusing 108.6 bbls YF 125 LG in 6% kcl wtr, 30 tons CO2287 bbls 70Q & 60Q CO2 foam. Flush w/28 bbls 50/50 6% kcl wtr & CO2". "Fracusing 101.4 bbls YF 125 LG in 6% kcl wtr, 22 tons CO2241 bbls 70Q & 60Q CO2 foam. Flush	No
	760.8 W	R 9/1	5/2001		16.24	26.9		7.67		X 1	8,49	3			w/32 bbls 6% kcl wtr." "Fracusing 139.5 bbls YF 125 LG in 6% kcl wtr, 38 tons CO2342 bbls 70Q & 60Q CO2 foam. Flush	
	850.1 W	R 9/1	15/2001		10.64	21.2		7.29		X 7	439				w/38 bbls 6% kcl wtr". "Fracusing 91.9 bbls wf 125 in 6% KCl wtr, 22 tons CO2176 bbls 70Q & 60Q foam. Flush w/42.3 bbls 6% kcl wtr"	
	914.4 W				20.39	J		0.45		X 8]["Fracusing 88.5 bbls wf 125 in 6% KCl wtr, 20 tons CO2166 bbls 70Q & 60 Q foam. Flush w/43 bbls 6% KCl water"	
	1062 FC				16.80 14.53			9.45 5.45		L	4,369 8,03				"Frac132.4 bbls wf 125 in 6% kcl wtr, 36 tons CO2289 bbls 70Q & 60Q foam. Flush w/53 bbls 6% kcl wtr" "Fracusing 214.9 bblswf 125 in 6% kcl wtr, 72 tons CO2615 bbls 70Q & 60Q foam. Flush w/57 bbls	.
	1291 FU	J 9/1 ²	V2001		17.11	27.6		7.98		X 2	1,81	i			6% kcl wtr" "Fracuisng 184.3 bbls wf 125 in 6% kcl wtr, 59 tons CO2536 bbls 70Q & 60Q CO2 foam. Flush w/65 bbls 6% kcl wtr."	
23-12 52	-1		2001 11.48		17.93			7.45 8.83 8.07 8.68		X 1	7,03	7 0		139	"totals pumped 112 bbls KCl, 218 bbls CO2"	Yes
			9/2001 17.1 9/2001 16.8	ļ	15.51 15.17	25.0		8.83 8.07		X 1 X 7	3,07 ,459				"totals pumped 118 bbls KCl, 180 bbls CO2" "totals pumped 78 bbls KCl, 83 bbls CO2"	
	878.1 W	R 9/	9/2001 13.5 9/2001 20.12	Ī	20.68 17.24	26.0		0.00		X 1	1,050 1,010)			"totals pumped 106 bbls KCl, 134 bbls CO2" "totals pumped 111 bbls KCl, 134.6 bbls CO2"	
44-2 609	WR 9/2				13.04			8.20	Ī	X 7	042	0		198	"Totals pumped 58 KCl, 88 CO2"	No
			2001 15.51 1/2001 24.8	ļ	10.63 11.91	25.3		6.76		X = 1	4,22 5,16	3			"Totals pumped 107 KCl, 162 CO2"	
			41/2001 24.8. /2001 21.57		17.20			6.89 8.00		$\begin{array}{c} X & 1 \\ X & 2 \end{array}$	3,16) 3,336	<u>.</u> 			"Totals pumped 119 bbls KCl, 180 CO2" "Totals pumped 164 bbls KCl, 272 CO2"	.
			21/2001 22.7		13.93			8.20 6.76 6.89 8.00 8:62			32	í			* "Fræ-pumped WF 125 70Q.:.LoarXO2 pumpwent to flush early to prevent screen out. Totals pumped 105 bbls KCl, 116 bbls CO2"	
	1132 FU	9/20	/2001 21.68		19.31	34.0		6.55		X 1	3,18)			"Frac-pumped WF 125 70QTotals pumped 131 bbls KCl, 152 bbls CO2"	
31-9 705	WR 10/			26.10	13.44	23.0		10.55			,382			1,346 "6	6d bbl clean fluid, 92.4 bbls CO2. 422 bbl total load"	Yes
			18/2001		15.31			9.33		X 1	1,660 ,924)			"92 bbls clean fluid, 150.7 bbl CO2" "82 bbls clean fluid, 81.6 bbl CO2"	
			18/2001 18/2001	28.19 24.71	14.51	22.7		10.55 9.33 9.86 12.09		X 6	,924 ,022		ļ	ļ	"82 bbls clean fluid, 81.6 bbl CO2" "Total clean fluid 95 bbls, 108.1 bbls CO2"	.
	1008 W	R 10/		24.71 17.11				26.09		$\frac{\Lambda}{X} \cdot \frac{1}{7}$	154			·	"Total clean fluid 95 bbls, 108.1 bbls CO2" "Total clean fluid 87 bbls and 89.4 bbl CO2"	.
34-10 1	407 FU 1	0/6/20	01 19.51 /2001 20.20				28.91 26.89	8.38 19.10		X 1	7,55 437	3 5		4,816 "7	rotal pumped 143 bbls KC 1, 219 bbls CO2" "Total pumped 120 bbls KCl,167 bbls CO2"	Yes
	1538 FU	10/4	/2001 25.51		19.44	28.4	26.45	9.16	 	X 1	3,73	3	†	·	"Total pumped 136 bbls KCl, 206 bbls CO2"	
1	1590 FU	10/3	/2001 15.03		19.65	27.4	19.71	9.65		X 1	6,320 6,03)	[["Total pumped 156 bbls KCl, 242 bbls CO2"	
			/2001 14.48	ļ			21.02	6.39	ļ			5		ļ	"Total pumped 145 bbls KCl, 230 bbls CO2"	
24 1 7 1			2001 10.64	10.55	16.97	+		 = 4-		-	,440			020	"Screened out with 8458# in 12/20 sand in csgTotal pump 83.6 KCl,108 bbls CO2"	<u> </u>
34-1 564	.8 WR 1	y/11/2	1 001	12.37	10.51	J21.0	13.13	7.45	L	X 8	,145	0	l	930	"Total pumped 82 bbls KCl, 95 bbls CO2"	No

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bnm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	785.2 W		10.26 11.89	13.79	30.0		7.96 7.03		X 1	0,866 0,864				"Total pumped 93 bbls KCl, 127 bbls CO2" "Totals pumped 98 bbls KCl, 124 bbls CO2"	
			15.58			13.70				,584				"Frac-WF 125 70QTotals pumped 92 bbls KCl, 87 bbls CO2"	
21-12 50	823.9 W	R 10/27/2001	7.58 18 22.93 12.74 19.99	18.96 14.13	35.0 35.23 25.26 27.25	.79 .20	5.86 7.70 6.89 11.20		X 1	8,001 5,142 ,232 1,377	0		14	"Totals pumped 112 bbls KCl, 223 bbls CO2" "Totals pumped 107 bbls KCl, 180 bbls CO2". "Totals pumped 67 bbls KCl, 104 bbls CO2" "Totals pumped 105 bbls KCl, 134 bbls CO2"	No
12-10 72		0/26/2001 10/25/2001	7.58 1′ 14.48	l -		18.62 27.21	9.09			3,778 ,244	2		1,465 "To	tals pumped 102 bbls K CL, 196 bbls CO2" "Frac-WF 125 70Q CO2 foam fracscreened out w/6032#Totals pumbed 53 bbls 6% KCl, 86 bbls CO2"	No
12-1 606	704.7 W 929.9 W	/10/2001 R 11/10/2001 R 11/9/2001 21.0: R 11/9/2001 19.82	5 5	13.79 12.76 21.72 19.99	30.0 28.0		9.10 6.34 9.40 13.51		X 1 X 1	,066 0 0,465 0,928 ,448)		653	"Totals pumped 70 bbls KCl, 111 bbls CO2" "Totals pumped 99 bbls KCl, 131 bbls CO2" "Totals pumped 88 bbls KCl, 153 bbls CO2" "Totals pumped 93 bbls KCl, 83 bbls CO2"	No
42-3 438	507.8 W 687 WR 727.6 W	29/2005 12.69 R 1/29/2005 11.36 1/26/2005 14.34 R 11/14/2001	6				7.43 2′ 6.92 23 7.51 2′ 9.14 12.20	3.75	X 6 X 6 X 8	978 (812 573 718			1,675 "F1	nc w/64 bbls slickwater" "Frac w/100 bbls slickwater" "Frac w/93 bbls slickwater" "Frac w/68 bbls KCl, 103 bbls CO2" "Frac w/67 bbls KCl, 110 bbls CO2"	No
	850.4 W 1109 FU	R 11/13/2001 R 11/8/2001 11/2/2001					12.20 9.51 17.53		X 1 X 7	,944 2,775 127				"Frac w/95 bbls KCl, 163 bbls CO2" "Frac w/72 bbls KCl, 110 bbls CO2"	
22-1 626	7 WR 11 687.6 W	/1/2001 R 11/1/2001								,898 0 0,005)		892	"Frac w/168 bbl 75Q CO2 foam" "Frac w/197 bbl 75Q CO2 foam"	No
33-10W	1064 FU	12/1/2001 24.13					12.34		X 9	929 2	2		8,228 "F1	ac-BD w/6% KClPmp 230 bbl 70Q WF-125 CO2 foamTotal fluid 104, CO2 tons. Stimulation report indicates that 70Q CO2 WF-125 foam and fluids used contained Biocide B69, Surfactant EZEFLO F103, Foaming Agent F104, Breaker J218, Breaker Aid Liquid J318, Slurry PSG Polymer J877, Clay Stabilizer L55.	Yes
		11/30/2001 · · · 12/10/2004					4.30		$\begin{array}{c} X \cdot 1 \\ 0 \end{array}$	2,623				"Start 70Q CO2, 310 bbl" · · · · · · · · · · · · · · · · · · ·	
	1191 FU	12/10/2004 12/9/2004					†	 	0	1 †		†	 	"Breakdown w Linear gel"	··
	1368 FU	11/16/2001	7.93 2	.03	30.0		10.96	[X 1	F ? [["Total pumped 113 bbls KCl, 163 bbls CO2"	
	1415 FU 1510 FU	11/15/2001 11/14/2001	7.93 2 22.30 21.55	21.37 21.93	35.0		9.65 9.65			0,560 1,924				"Total pumped 172 bbls KCl, 229 bbls CO2" "Total pumped 154 bbls KCl, 154 bbls CO2"	
41-3 402		2/2005 11.16					4.27 20	0.36		,285)		29	"Frac w/77 bbl slickwater"	No
		R 12/6/2001 19.3	9	14.48	25.0		8.48			126				"Frac-BD w/6% KClStart 70Q CO2 143 bbls75 bbls water, 14 ton CO2"	
	15/1.2 W	R 2/1/2005 25.07 1/28/2005 26.10					7.52 23 8.79 23		X 6	,905 657				"Frac w/86 bbl slickwater" "Frac w/93 bbl slickwater"	
		R 1/26/2005 17.29	∳				8.55 23			799		·	·	"Frac w/108 bbl slickwater"	·
		R 1/22/2005 28.2					10.74		X 8	196		†	ļ	"Frac w/104 bbl slickwater"	
		R 12/5/2001 27.8:		17.93			10.55	[657		[["Frac-BD w/6% KClStart 70Q CO2 170 bbl22 ton CO2."	
		12/5/2001 18.53 12/4/2001 25.86		20.68 20.68			8.72 10.82	<u> </u>		,571 ,008		 	<u> </u>	"Frac-BD w/6% KClStart 70Q CO2 211 bbls109 bbl fluid & 20 ton CO2" "Frac-BD w/6% KClPump 233 70Q CO2 foam24 ton CO2, 129 bbl fluid."	

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	77	Break Down Pressure (MPa)	Avg Press Stimulatio	Avgerage Flow during Stimulation (hpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1120 FU			19.99	19.65 18.27	30.0		10.55		L	.139 1,141				"Frac-Breakdown 29 bbl 6% KClStart 70Q CO2 foam 162 bbls57 bbls fluid & 19 ton CO221 bbls flush screened out w/4410# 6# sand in formation." "Frac w/6% KClStart 70Q CO2 foam, 235 bbls slurryflush 57 bbl 50Q foam32 ton CO2, 140 bbl 6% KCl."	
22-11 568	690.1 W 730.9 W	R 12 R 12 R 12 R 12	15/2001 14/2001 14/2001 14/2001	20.20 26.54 16.20	12.07 13.79 13.79 22.06 18.62	35.0 30.0 30.1 33.0)	7.38 6.83 8.08 0.00		X 1 X 1 X 0	,885 (2,391 0,146 ,303 ,645	0		306	"Frac-Start 75Q foampump 197 bbls foam25 tons CO2, 67 bbls fluid" "Frac-Breakdown w/6% KC1Start 75Q CO2 foam 281 bbls, 31 tons CO2, 137 gel" "Frac-BreakdownTotals pumped 93 bbls KCl, 134 bbls CO2" "Fracpsi increasded to 4373-bled well down, psi continued to climb to 4007 shut down job. Pumped 87 bbls KCl & 96 bls CO2" "FracTotals pumped 146 bbls KCl, 149 bbls CO2" "FracPump 41 bbls KCl, 85.7 bbls CO2Screened out w/3227# in formation, 9219# in csg"	No
	.2 WR 589.5 W 734.9 W	/4/20 R 1/4 R 1/4 R 1/4 1/3//	02 11.50 /2002 10.59 /2002 14.82 /2002 1.31 2 002 16.26 9/2001	1.37 17.23	19.31 16.55	37.0 30.0 35.0 35.0 32.0 32.5		8.23 9.17 6.89 8.80 8.91 4.90 5.91		X X 8 X 9 X 1 X 6 X 7	,059 ,684 2,222 ,967 ,586 7,318	2	0	140	"Frac-Breakdown w/6% KClStart 75Q CO2, 2411 bbls foam, 123 bbls fluid, 44 tons CO2" "Frac-Breakdown w/6% KClStart 75Q CO2, 202.5 bbls fluid, 20 ton CO2" "Frac-Breakdown w/6% KClStart 75Q CO2, 243 bbls, 97 bbls fluid, 23 tons CO2" "Frac-Breakdown w/6% KClStart 75Q CO2 foam, 143 bbls fluid, 26 tons CO2" "Frac-Break down w/6% KClStart 70Q CO2 frac, 299 bbls, 136 fluid, 28 tons CO2" "Frac-Break down w/6% KClStart 70Q foam 306 bbls, 157 bbls gel, 25 tons CO2" "Frac-Break w/6% KClStart 70Q foam 881 bbls, 275 bbls gel, 97 tons CO2"	No
11-3 702.	9 WR 12 804.7 W 899.8 W 1167 FU	/12/2 R 12/ R 12/ 12/6	001 12/2001 12/2001 /2001 29.30	26.89 18.68 19.08	15.86	25.0 25.0 25.0		7.45 8.66 8.63			,648 ,983 ,888			1,895 "F	"Frac-Break w/6% KCKSta rt w/168 bbls 75Q CO2 foam, 17 ton CO2, 60 bbls of fluid" "Frac-Break w/6% KCIStart w/180 bbls 75Q CO2, 19 ton CO2, 96 bbls wtr" "Frac-Break w/6% KCIStart w/169 bbls 75Q CO2 foam, 51 bbl gel, 19 ton CO2" "Frac-Break down w/6% KCLStart 70Q CO2 185 bbls20 tons CO2, 55 bbl gelScreened out 4161 in formation, 11540 in pipe Re-frac break w/6% KCI 50 bbls. Start 337 bbl 75Q foam, 36 ton CO2, 147 bbl fluidscreened out w/12331 in formation, 5867# in pipe"	No
41-10 493	661.7 W 766.9 W	R 1/2 R 1/1	002 15.72 0/2002 19.2 9/2002 17.6 9/2002 11.8	\$	14.48 13.79 14.48 15.86	35.0 30.0		6.89 7.86 8.48 7.14		X 1 X 9	1,832 1,104 ,525			157	"Frac-Break w/6% KCLStart 75Q CO2, 70 bbls fluid, 28 ton CO2flush 24 bbls 50/50" "Frac-Break down w/6% KCLStart 75Q foam, 96 bbls gel, 27 ton CO232 bbls 6% KCl flush" "Frac-Break down w/6% KCLStart 75Q 208 bbls, foam 63.5.bbls, 26 ton CO2flush 37 bbls 50/50 flush" "Frac-Break down w/6% KCLStart 75Q foam 228 bbl, 64.5 fluid, 26 ton CO2Flush w/40.5 bbls 6%	Yes
	841.2 W 863.8 W	R 1/2 R 1/1	9/2002 11.0 9/2002 18.6 9/2002 16.1	3 3 2	15.86 13.79 14.48	35.0 25.0		6.41 8.96			0,559 562				KCI" "Frac-Break down w/6% KCLStart 75Q foam 222 bbls, 62.5 bbls fluid, 26 ton CO2 43.5 bbls flush 6% KCI" "Frac-Break w/6% KCLStart 75Q foam 144 bbls, 44 bbls fluid, 16 ton CO2flush 44.5 bbls 6%" "Frac-Break down w/6% KClStart 75Q CO2 150 bbl fluid, 18 ton CO2flush 48 bbls 6% KCl"	
	823.6 W 982.4 W 1052 FU	R 1/2 R 1/2	/2002 18.09 3/2002 15.4 2/2002 19.0 /2002 20.82 /2001 16.55	5 5	14.48 14.48 18.62 18.62 19.99	30.0 25.0 30.0		9.10 8.56 6.00		X 6 X 6 X 6	1,819 ,214 ,456 ,917 6,565			322	"Frac-Break down w/6% KClStart 75Q foam, 72 bbls fluid, 30 tons CO2 37 bbl 50/50" "Frac-Break down w/6% KClStart 75Q CO2 foam, 175 bbls, 78 bbl fluid, 16 ton CO2" "Break w/6% KClStart 75Q foam, 146 bbls, 43 bbl fluid, 17 tons CO2screened out w/7900# in formation, 6340# in pipe" "Frac-Break w/6% KClStart 70Q foam 258 bbls, 81 bbl fluid, 24 ton CO252 bbl 6% flush" "Frac-Break w/6% KClStart 70Q CO2 foam, 482 bbls, 142 bbls fluid, 55 ton CO255 bbl flush 6% KCL."	No

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation		Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)		Max Pressure During Stimulation (MPa)		Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
24-3B 13	853 FU 2	/6/200	2 14.55		15.86	35.0		5.07		X 1	8,83	5 2		13,316	'Hrac-Breakdownstart 70Q CO2 foam- 564 bbls, 169 bbls gel, 62 tons CO265 bbl flush 50/50did not screen outmonitored well 24X-3 off set, psi did not increase"	No
	1464 FI 1470 FI	1/30 1/30	2002 25.51 /2002 11.72 /2002 12.09 /2002 12.41		21.72 21.37 25.51	35.0	8 23.24 22.41 27.92	3.74		X 1 X 1 X 1 X 1	5,16 5,66	3			"Frac-Breakdowntotals pumped 184 bbls KCl, 337 bbls CO2CO2 hose leaking" "FracBreakdownTotals pumped 161 bbls KCl, 297 bbls CO2" "Frac-BreakdownTotal pumped 207 bbls KCl, 282 bbls CO2" "FracBreakdowntotal pumped 190 bbls KCl, 254 bbls CO2"	
11-11B 4		WR	2/18/2005 1:	2.31		33.9	19.37	6.48		X	7,2		4	13,056	"Frac:18 ton of CO2, 63 bbl of clean fluid"	Yes
	524 566.3 659 688.8 965	WR WR WR	2/18/2005 1: 2/18/2005 1: 2/18/2005 2: 2/18/2005 9: 2/17/2005 1	0.02 6.23 96		35.0 35.6 36.3	20.29 17.01 21.13 17.84 1.31 1	7.04 7.56		X X X X	11,				"Frac15 tons CO2 and 78 bbls clean fluid" "Frac23 ton CO2 and 95 bbls clean fluid" "Frac19 tons of CO2 and 91 bbls clean fluid" "Frac27 tons of CO2 and 124 bbls clean fluid" "Frac32 ton of CO2, 232 bbls clean fluid"	
	1027	R FU	2/14/2002 2	1.93	16.55	35.0		ļ		X	4,9	23			"FracBreak w/6% KClFrac using 197 bbls 70Q CO2 foam, 64 bbls gel, 22 ton CO2 Flush w/6% KCl & 50/50 CO2"	
	1045 1078	FU FU	2/15/20005 2/14/2002 9	18.73 17 18.	62	35.0		10.02		X X	16 10	084 778			"Frac:211 bbl clean fluid and 42 ton CO2" "Frac-Break w/6% KClFrac uisng 386 bbl 70Q CO2 foam, 140.5 bbls gel, 37 tons CO253.5 bbls 6% flush"	
	1158	FU	2/13/2002 1:	L	19.31			ļ <u>.</u>		Χ		600			"Frac-Break w/6% KC1Frac using 346 bbls 70Q CO2, 138 bbls gel, 33 tons CO2. Flush w/56 bbls 50/50 CO2"	
	1316 1375 1404	FÜ	2/12/2002 1 2/9/2002 19 2/12/2005 2	62	21.72 19.31			7.61 7.03		X X	15.	547 569 118			"Frac: Break w/6% KClFrac using 70Q CO2 foam, 157 bbls gel, 37 tons CO2 64 bbl flush 50/50." "Frac: Break w/6% KClFrac w/438 bbls 70Q foam, 145 bbls gel, 50 tons CO2flush 60% CO2." "Frac:pumped 356 bbl clean fluidand 33 tons CO2"	
	1442	FU .	2/9/2002 22	#.13 .85	21.37	35.0		7.03		<u>л</u> Х	9,5		 		"Frac: Break w/6% KC1Frac w/280 bbls 70Q CO2 foam, 83 bbls gel, 28 tons CO2"	
31-11 59	8.6 WR	2/19/2	002 10.67		18.96	35.0		7.10		X 1	2.95			207	"Frac-BD w/6% KClFrac using 75Q foam, 63 bbls gel, 25 tons CO227 bbls 30Q foam flush"	No
	730 WI	2/19	0/2002 7.79 2002 21.92		13.79	25.0 25.0		7.10 6.14 7.58 8.20 8.52		X 6	,781 ,715				"Frac-BD w/6% KClFrac using 140 bbls 75Q foam, 41.5 bbls gel, 17 ton CO2flush 32 bbls 6% KCl" "Frac-BD w/6% KClFrac using 142 bbls 75Q CO2 foam, 41 bbls gel, 16 tons CO236 bbls 6% KCl"	
			9/2002 13.6: 6/2002 7.01		17.93	30:0 30.0		8.20			167 0,88				: "Frac-BD w/6% KClFrac using 75Q CO2 foam, 92 bbls gel, 23 ton CO2flush w/38.5 bbls 6% KCl" "Frac-BD w/6% KClFrac using 75Q foam, 63 bbls gel, 24 ton CO2flush w/40 bbls 6%"	
			/2002 16.75	17.31	25.51	35.0		0.52			2,24		<u> </u>		"Frac-BD w/6% KC1Frac using 75Q CO2, 123 bbls gel, 41 tons CO2	
	1109 F	2/16	/2002 20.93		18.62	35.0		4.96		X 1					"Frac-BD w/6% KClFrac uisng 75Q CO2, 123 bbls gel, 41 tons CO2 "Frac-BD w/6% KClFrac using 380 bbls 70Q CO2 foam, 112 bbls gel, 45 ton CO254 bbls 6% KCl flush"	
	1139 F	2/15	/2002 15.03	[9.65 2	2.0		[Χ]		ļ		"Frac-BD w/6% KClFrac using 85 bbls CO2, 25 bbls in formation"	
			/2002 15.86 /2002 27.30		15.17 16.20	30.0 35.0		4.34		X X 1	1 2,280	j		ļ	"Frac-BD w/6% KCLFrac uisng 85 bbls 75Q CO2, flush 25 in formationrecover 17 bbls of 85 bbls" "Frac-BD w/6% KClFrac uisng 346 bbls 70Q CO2 foam, 104 bbls gel, 39 ton CO2flush w/46 bbls 50/50 + 10 bbls 6% KCl111 of 190 recovered"	
23-3 510	.2 WR 2	/21/20	02 16.55		12.07	25.0		7.93		X 8	741	2		1,202 "I	Frac-BD w/6% KClFrac using 176 bbls 75Q CO2, 44 bbls gel, 20 ton CO223 bbls 6% KCl + CO2	No
	 	m 57	1/2002	ļ	15-17	25.0		0.00			1.55		ļ	ļ	flush"	.
	775.4 V	R 2/2	1/2002 1/2002 11.6: 2002 22.41	\$	15.17 19.31 15.17	32.0		8.89 7.58 9.89		X 8 X 1 X 9	1,11	3			"Frac-BD w/6% KClFrac using 176 bbls 75Q CO2, 52 bbls gel, 20 ton CO230 bbls 6% flush" "Frac-BD w/6% KClFrac using 75Q CO2, 109 bbls gel, 26 ton CO236.5 bbls 6% KCl flush" "Frac-BD w/6% KClFrac using 75Q CO2, 64 bbls gel, 19 ton CO239 bbls 50/50 flushmade recover	
	844.9 V	R 2/2	0/2002 12.0:	↓ 3	15.86	27.0		10.17		X 1	0,98	5	 		122 bbls of 629" "Frac-BD w/6% KClFrac using 75Q CO2, 65.5 bbls gel, 27 ton CO242.5 bbls 6% KCl flush"	1

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation		Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)		Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1155 FU	2/20	/2002 20.77 /2002 8.27 1	8.96	18.27 16.89	35.0		9.17 4.07 5.38		X 6 X 1 X 1	,668 4,87	3			"Frac-BD w/6% KClFrac using 206 bbls 70Q CO2, 65 bbls gel, 24 ton CO252 bbls 6% KCl flush" "Frac-BD w/6% KClFrac using 492 bbls 70Q CO2, 184 bbls gel, 50 ton CO256 bbls 6% KCl flush"	
32-11-53			2002 15.38 2002 12.55		13.79			7.83			4,94 ,056			1 027 "Er	"BD w/6% KClFrac using 70Q CO2, 144 bbls gel, 53 ton CO2flush w/67 bbls 50% CO2" ac-BD w/6% KClFrac u sing 161 bbls 75Q CO2 foam, 45 bbls gel, 18 ton CO [CO2]24 bbls KCl	No
32-11 33.	603.2 W 721.2 W	/R 2// /R 2// /R 2//	26/2002 17.4 26/2002 19.3 26/2002 13.1 2/23/2002 1	5	15.86 13.79 20.68 12.07	30.0 30 35		5.52 6.79 6.21 3.35		X 9 X 9 X 1	,036 ,764 ,906 2,079 3,81	·		1,027 P1	flush" "Frac-BD w/6% KClFrac using 201 bbls 75Q CO2, 56 bbls gel, 23 ton CO228.5 bbls 6% flush" "Frac-BD w/6% KClFrac using 206 bbls 75Q CO2, 60 bbls gel, 23 tons CO234 bbls 8% flush" "Frac-BD w/6% KClFrac using 273 bbls 70Q CO2, 110 bbls gel, 28 ton CO237.5 bbls 6% flush" "Frac-BD w/6% KClFrac using 273 bbls 70Q CO2, 110 bbls gel, 28 ton CO237.5 bbls 6% flush" "Frac-BD w/6% KClFrac using 296 bbls 75Q CO2, 87 gel, 35 ton CO246 bbls 50% CO2 flush"	
			V2002 30.67		26.20					L	218	·			"Frac-BD w/6% KClFrac using 207 bbls 70Q CO2, 72 bbls gel, 22 tons CO2screened out w/6570# in formation, 7136 in piperecover 122 of 609"	
	1133 FU	2/22	/2002 20.34 /2002 26.20 /2002 24.82		18.96 17.24 17.93	33		5.52 4.69 2.34		X 1 X 1 X	2,42 7,56	5			"Frac-BD w/8% KClFrac using 382 bbls 70Q CO2, 121 bbls gel, 43 ton CO254 bbls 6% flush" "Frac-BD w/6% KClFrac using 70Q foam, 164 bbls gel, 59 ton CO257 bbls 6% flush" "Frac-BD w/6% KClFrac using 50 bbls 75Q foam, flush w/50Q foamTotal fluid 53 bbls, 12 ton CO2, flush 60 bls 50Q foam"	
44-11 530			2002 19.55 28/2002 14.6	5	13.79 14.48	25.0		6.62		X 7 X 6 X 6	,248 ,940			1,643 "Fr	ac-BD w/6% KClFrac u sing 150 bbls 75Q CO2 foam, 47 bbls gel, 16 tons CO2Flush w/24.5 bbls 50% CO2" "Frac-BD w/6% KClFrac using 147 bbls 75Q CO2 foam, 44 bbls gel, 17 ton CO230 bbls 6% flush"	No
	872.9 W 996.7 B	/R 2// W R	28/2002 20.1 2/28/2002 1	i 9.17	15.86 19.17	35.0 35.0		11.17 1.52		X 6 X 1	,917 3,65	3			"Frac-BD w/6% KClFrac using 152 bbls 75Q CO2 faom [foam], 47 bbls gel, 17 ton CO2" "Frac-BD w/6% KClFrac using 303 bbls 75Q CO2 foam, 83 bbls gel, 35 ton CO2"	
		<u></u>	72002 29.65 72002 13.13		13.10 20.68	<u></u>		5.17 6.96		X 8 X 2]["Frac-BD w/6% KClFrac using 245 bbls 70Q CO2 foam, 87.5 bbls gel, 28 ton CO2flush w/54 bbls 6% KCl" "Frac-Breakdown w/6% KClFrac using 620 bbls 70Q CO2 foam, 182 bbls gel, 69 tons CO2flush w/57	
	11,21		2002 13.13		20.00	٠.		0.70			,,,,				bbls 50% CO2"	
42-9W													5,051		oduction in Wind River Formation. 8 perfor ated intervals from 1776-3138.' No information on stimulation	_
32-9W 7'	832.1 W 894.9 W	R 3/ R 3/	/2002 17.42 19/2002 17.2 19/2002 22.2 9/2002 23.92	<u> </u>	18.27 13.10 18.62 26.89	25.0 30.0	1	6.83 8.76 10.34 10.55		X 7 X 9	3,42(,487 ,784 ,502	2		1,380 "Fr	ac-BreakPump pad 28+2 tons CO2, 132.6 load" "Frac-Break formationPump pad17+1 CO2, 105 bbls load" "Frac-Break formationPump pad128 bbls load, 22+1 tons CO2" "Frac-Break formationPump pad103.6 bbls clean fluid, 22+2 tons CO2"	Yes
	378 FU 1442 FU	3/22/2	2002 10.62 \$\begin{align*} 2002 12.41 \\ 2002 18.13 \\ 2002 13.79		19.31 19.31 26.54	35.0 35.0 34.0		3.45 3.79		X 1 X 1	9,39 8,27	5 7	7 "Fra	c-Break	CO2 hose rupt ured during pad/replace. Extend pad 53 bbls97 tons CO2296.4 bbls" "Frac-fill hole 57 bbls, breakFrac using 62 tons CO2275 bbls" "Frac-Break formationFrac using67 tons CO2, 198 bbls load"	Yes
	1614 FU 1663 FU	3/20 3/20	/2002 13.79 /2002 17.25 /2002 18.96 /2002 17.93		26.89 22.06 25.51 24.13	32.0]	10.14 6.69 3.52 14.65	 	X 1 X 1 X 1	8,280 4,080 7,780 ,167)			"Frac-BreakFrac using63 tons CO2, 314 bbls load" "Frac-BreakFrac using50+2 ton CO2, 318 bbls kcl" "Frac-BreakFrac-pump pad56+2 ton CO2, 234 kcl" "Frac-Break formationFrac using204 bbls 6% kcl, 23+2 tons CO2"	
13-11B 1	102 FU 1145 FU	4/6/20 I 4/6/			19.65 24.13	35.0		5.07 6.83		X 1	4,78	2		7,087 "Fr	ac-Breakdown w/6% KClF rac using 70Q CO2 foam, 125 bbls gel, 39 tons CO253 bbls 50% CO2 flush" "Frac-Break w/6% kclFrac using 70Q CO2, 896 bls, 283 bbls gel, 97 ton CO257 bbls 30% CO2 flush" "Frac-Break67 tons CO2+209 bbls load"67 tons CO2, 209 bbls "load"	No

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1452 FU		3/2002		20.68		<i>-</i> 9.	8.27			0.85	1000		_	"Frac-Break formation167 bbls. 34 tons CO2"167 bbls of ?, 34 tons CO2	
	1572 FU				16.55			10.48			568				"Frac-Break formation35 ton CO2 & 175 bbls fluid"35 tons CO2, 175 bbls "fluid"	1
14-3W 1	359 FU 4	1/9/20	02 8.19 22.7	5		37.0				X 2	3,22	4 3		5,695 "I	rac-Break down w/6% KC1Fr ac using 70Q CO2. 650 bbls, 183 bbls gel, 70 tons CO286 bbls 50%	Yes
	1538 FU	4/9/	2002 7.83 22 2002 14.20 2002 15.86	75	22.75 26.20	36.0 33.0 27.0		4.48 7.58		X 2 X 1 X 7	2,29 1,85 ,145) 7			CO2 flush" "Breakdown w/6% KClFrac using 70Q CO2 foam 630 bbls, 174 bbls gel, 71 ton CO272 bbls 6% flush" "Break down w/6% KClFrac using 70Q CO2 faom [foam], 338 bbls, 39 ton CO276 bbls 6% flush" "Break down w/6% KClFrac using 70Q CO2 209 bbls, 22 ton CO2screened out w/12411# in formation,	
	1608 FI	4/5/	2002 17.13		27.58	27.0		ļ		X 7	108				3342# in pipe" "Break down w/6% KClFrac using 206 bbls gel, 20 ton CO2"	
12-2 683	.4 WR 1 851 WF 941.2 W	1/29/2 11/2 /R 11	001 9/2001 /29/2001	15.51 21.51	15.17 14.82			9.79 9.24 9.97		X 8 X 7	3,763 3,85 3,432	0		0	"BD w/6% KCl171 bbls 70Q CO254 bbls 6% KCL, 22 ton CO2, 32 bbls 50Q foam" "Frac BD w/6% KClstart 70Q CO2 foam 177 bbls41.5 bbls KCl flush" "Frac-BD w/6% KClStart 70Q CO2 foam. 174 bbls81 bbls 6% KCl, 22 ton CO2. Flush w/45 bbls 50Q CO2"	No
	1066 FU	11/2	7/2001	27.58						X 7	,879				"Break w/6% KC1Start 70Q CO2 foam, 164 bbls slurry pumped17370# 12/20 sand screened out w/11278# in pipe, 6083# in formation. Total 51 bbls no flush pumped"	
23-10W	793.1 W 881.8 W 1138 FU 1161 FU	/R 12 /R 12 / 12/1 / 12/1	14/2002 14/2002 3/2002 3/2002	26.24 23.12 12.94 7.64 2	24.13 17.93 16.89 16.55 0.68	35.0 25.0 30.0 35.0		10.98 10.62 7.27 4.14		X 1 X 6 X 7 X 2	5,98′ 7,25 ,130 ,644 3,87	3		5,892 "I	rac-Pumped 114 bbls KCl, 219 bbls CO2" "Frac-Pumped 136 bbls KCl, 220 bbls CO2" "Frac-Pumped 111 bbls KCl, 138 bbls CO2" "Frac-Pumped 105 bbls KCl, 178 bbls CO2" "Frac-Pumped 258 bbls KCl, 442 bls CO2"	No
22.100.0	1310 FU			16.33	22.41	35.0		9.65			4,43			4.554.07	"Frac-Pumped 192 bbls KCl, 260 bbls CO2"	3.7
25-100 3	701 WF 730.9 W 812 WF 864.1 W	R 10/1 R 10/1 R 10 R 10/1 R 10	13/2004 3/2004 13/2004 3/2004 13/2004	7.36 13.10 8.57 14.94 11.38				7.62 7.79 7.43 7.45		X 6 X 1 X 7 X 6 X 8	,741 ,705 0,550 ,928 ,895 ,342 5,581)		4,554 "I	"Flush w/28 bbls water" "Flush w/34 bbls water" "Flush w/36 bbls" "Start flush 20 bbls" "Flush w/43,5 bbls water"	Yes
	949.8 W	R 10	13/2004	18.34 9.17				7.45 7.98 7.58		X 6 X 7	,581 ,032				"Flush to top perf w/46 bbls water" "Flush to top perf w/48 bbls water"	
	1143 FU 1411 FU 1544 FU	10/4 10/4 10/4	/2004 10.30		15.17 22.06			6.21 6.48 7.14		X 0 X 9 X 9 X 7	032 0295 0388 711				"Start frac when 26 bbls flush away" "131 bbl clean fluid and 30 ton CO2" "28 ton CO2" "166 bbl "clean fluid", 24 ton CO2"	
24 2D 05	1646 FU 1690 FU	10/4 10/4	/2004 8.73 1 /2004 8.73 2 /2004 11.88	2.06	24.13		4	5.81 6.71 6.71		X 1 X 1 X 1	0,21 3,01 2,98	6 7 7		0.501 "	"182 bbl clean fluid and 28 ton CO2" "225 bbl "clean fluid" and 39 tons CO2" "268 bbl "clean fluid" and 39 tons CO2" "268 bbl "clean fluid" and 39 tons CO2"	NIO
34-38 93	1039 FU 1070 FU 1134 FU 1401 FU	11/9 11/9 11/9	/2004 /2004			19.2	14	7.24		X 1 X 1 X 9	,511 3,60 3,60 ,525 3,60	8		ו" 201 ו	rac 139 bbls slickwater" "Frac w/70Q CO2 foam." "Frac w/70Q CO2 foam" "Frac w/0Q CO2 foam" "Frac w/0Q CO2 foam" "Frac w/0Q CO2 foam"	No

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (hpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1490 FU	11/9/2004			34.4	17			X 1	0,886	5			"Frac w/70Q CO2 foamscreened out w/7 bbls flush remainingpressure up to 5000# could not pump into perfs"	5
	1555 FU	11/2/2004 16.13 11/2/2004 13.49 11/2/2004 14.34		22.75 19.31 22.06	35.0		9.17 8.05		X 1	,705 0,47 7,27				"Frac185 bbl clean fluid, 29 tons CO2. Screened out 46 bbl into flush" "Frac185 bbl clean fluid, 33 ton CO2" "Frac267 bbl clean fluid, 49 tons CO2"	
		11/2/2004 14.34		26.20			16.82			0,02)			"Frac32 bbl clear fluid, 49 ton CO2"	
24-2 468	497.1 W	/27/2004 R 10/27/2004	7.07 1 4.83 1	0.34	35.0 35.0		6.06 4.65 6.07 6.55 7.24		X 9	,018 ,602	0		174	"Frac86 bbl clean fluid, 26 tons CO2, flush w/50 quality." "frac118 bbl clean fluid, 29 tons CO2"	No
	699.2 W	R 10/27/2004	11.48 8.48 1	14.48	35.0 35.0		6.07		X 9	,696 ,275				"Frac29 tons CO2, 128 bbl clean fluid" "Frac108 bbl clean fluid, 18 tons CO2"	.
	1116 FU	10/27/2004	14.80	19.31	35.0		7.24		X 1	0,85				"Frac170 bbls clean fluid, 31 tons CO2"	/
	1154 FU	10/29/2004	2.07 1	_!	35.0]	4.14		X 1	,52	}			"Frac246 bbl clean fluid, 34 tons CO2"	.
22 10P (10/26/2004 0/21/2004	_	20.68 18.62	35.0		3.65 6.93			6,140 6,485			4 625 "0"	Frac227 bbl clean fluid, 49 tons CO2" bbl clean fluid. 22 ton CO2"	Vac
23-106 (R 10/21/2004	8.96 1	7.93	35.0		8.00 1	 9 .91	$X = \epsilon$,483 ,473			4,023 92	bbl clean fluid, 22 ton CO2" "150 bbl clean fluid, 20 tons CO2	Yes
	872.6 W	R 10/20/2004	8.30 1	9.65 19.99	35.0	1	7.35 1	\$.55	Χ 6	559				"96.5 bbls clean fluid, 22 tons CO2. Flush w/50Q"	.
	893.7 W	R 10/20/2004 R 10/20/2004	12.45	19.99 17.24	35.0 35.0		9.86 2 8.83 1	1.49	X 6	628 181		ļ		"117 bbls clean fluid, 19 tons CO2" "141 bbls clean fluid, 28 tons CO2"	
				19.31	35.0		10.29			174				"149 bbls clean fluid, 28 tons CO2"	/
	1134 FU	10/20/2004	8.94 1	8.62	35.0		7.58 1			0,31)			"224 bbls clean fluid, 34 tons CO2"	
	1395 FU	10/16/2004	10.34	15.86	35.0 35.0]	3.00 3.19			8,086		["235 bbls clean fluid, 54 tons CO2"	
	1458 FU	10/16/2004 10/16/2004		17.24 20.68			3.19 4.92		X l	5,48 5,804				"248 bbls clean fluid, 43 tons CO2" "267 bbls clean fluid, 43 tons CO2"	
				20.08			1.21		$\frac{1}{X} - \frac{1}{1}$	5,801 5,981	:)			"224 bbl clean fluid, 43 tons CO2"	· - !
33-10B 5		12/6/2004 7.78					9.09		-	0.0	72 2		2,219 "SI	ckwater, CO2 assist-96 bbl"	Yes
	523.3 W	R 12/6/2004 30.5	9			1	8.30		Χ 8	,165		1		"Slickwater, CO2 assist-83 bbl" "Slickwater, CO2 assist-89 bbl"	.
		R 12/6/2004 11.0		J			9.14		h	0 ,431				"Slickwater, CO2 assist-89 bbl"	
		R 12/6/2004 27.0 R 12/6/2004 16.1					7.50			,804 ,897				"Slickwater, CO2 assist-87 bbl" "Slickwater, CO2 assist-85 bble"	
	808.9 W	R 12/6/2004 10.1	⊈ ∮	-			14.63 8.46	·		4.51				"Slickwater, CO2 assist-85 bbls" "Slickwater, CO2 assist-140 bbl"	
	865 WR	12/5 2004 18.37]	1	9.47 12.04		Χ 6	3:1				"Slickwater, CO2 assist-89 bbl" "slickwater, CO2 assist-180 bbl"	.
	960.1 W	R 12/5/2004 17.9	6]	12.04			804		["slickwater, CO2 assist-180 bb1"	
		12/5/2004 17.37 12/5/2004 4.32	ļ	-	ļ	 	8.96 8.25			5,966 5,876				"Slickwater, CO2 assit-177 bbl" "Slickwater, CO2 assit-187 bbl"	
		12/5/2004 4.32 12/5/2004 10.96	·	 -	 	 	8.25 6.78 3.01			6,329			·	Shekwater, CO2 assist-260 bbl"	·!
		11/23/2004	15.71	†		1	3.01	ļ	X 6			†	ļ	"Slickwater, CO2 assist-260 bbl" "Slickwater, CO2 assit-102 bbl"	1
		11/23/2004	26.32			<u> </u>	12.69	<u> </u>		0,04	3	<u> </u>	<u></u>	"Slickwater, CO2 assit-126 bbl"	<u> </u>
12-11B 4	\$28.5 WR	12/31/2004	10.73	10.14	13.2	21	6.54		X 1	3,387	7 0		731	No description of stimulation fluids in well completion report. From WOGCC (2014), "Wind River Sands were selectively perforated between 1,406' and 2,674' and fracture treated with an estimated total of 610 barrels of CO2 assisted gelled waterThe shallowest perforations are 1,406'-1,473' and this interval was fracture treated with 110 barrels of CO2 assisted gelled water"	Yes
	467.6 W	R 12/31/2004	13.47	9.68	4.23	1	5.98 2	2.85	X 7	1 251		†	ļ	see above	1

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
4	199.9 W 523 WR	R 12/31/2004 12/31/2004	10.71 17.20	10.17 12.82	14.0 17.2		5.80 2 5.81 2	.72 .26	X 7 X 7	,910 ,909				see above see above	
[8	311.7 W	R 12/31/2004 12/31/2004	8.61 1 9.54 1	1.24	16.7 19.5	7	5.37 1 6.40 1	5.74	X 8	147 1,320				see above From WOGCC (2014) "fracture treated with an estimated 100 barrels of CO2 assisted gelled water"	
43-10B 55	1.7 WR	11/18/2004	11.09	11.14	_	16.63	8.69 2:	5.79		,666			2,606 Fro	m stimulation rpt: 3529 gal wa ter, 3529 gal 70Q CO2 WF12, 43 lb J218. 25 lb/1000 gal polymer loading	y. Yes
5	577.6 W	R 11/18/2004 R 11/18/2004	22.13 10.69			24.12 17.97	9.45 20 8.83 20		$X \epsilon$	817 543				From stimulation rpt: 4206 gal water, 2989 gal 70Q CO2 WF12, 44 lb J218. 25 lb/1000 gal polymer loading From stimulation rpt: 4329 gal water, 2969 gal 70Q CO2 WF12, 46 lb J218. 25 lb/1000 gal polymer loading	
7	732.7 W	R 11/18/2004	11.55	13.29			10.34		X 7	,068		ļ		From stimulation rpt: 4596 gal water, 3027 gal 70Q CO2 WF12, 46 lb J218. 25 lb/1000 gal polymer loading	;. ;.
7	768.4 W	R 11/18/2004 R 11/13/2004								,031 3,092		ļ		"slickwater/CO2 assist"	
1	103 FU	11/13/2004	17.65				5.27		X 6	841		<u> </u>		"Frac: slickwater/CO2 assist-158 bbls" "Frac: slickwater/CO2 assit-162 bbls"	
]	1163 FU	11/13/2004 11/13/2004	14.75 8.62 8.76 12.41 11.38				5.27 5.27 6.21 9.48 12.82		X 9	274	·	ļ		"Frac:slickwater/CO2 assist-114 bbls"	
	1420 FU 1505 FU	11/13/2004	8.62 8.76				6.21 9.48		X 1 X 1	6,036 0 ,866) 	 	<u> </u>	"Frac: slickwater/CO2 assit-210 bbls" "Frac: slickwater/CO2 assist-171 bbls"	
1	1579 FU	11/13/2004	12.41				12.82		X 8	<u> </u>		ļ		"Frac: slickwater/CO2 assist-169 bbls"	
		11/13/2004 11/13/2004	11.38 14.13				11.03 9.79			6,919 1299		 		"Frac: slickwater/CO2 assist-247 bbls" "Frac: slickwater/CO2 assist-263 bbls"	
24-11 447.	.8 WR 1	2/16/2005					8.09 28			131	2	İ	1,476 "91	bbls linear gel"	No
	500.8 W	R 12/16/2005 R 12/16/2005					8.76 24 10.79		Х 6 Х 9	916				"102 bbls linear gel" "122 bbls linear gel" "111 bbls linear gel" "114 bbls linear gel" "124 bbls linear gel"	
7	751.3 W	R 12/16/2005					8.54 19		$\mathbf{X} = 7$	949 ,481		<u> </u>		"111 bbls linear gel"	
9	931.5 W	R 12/16/2005 12/16/2005					10.84		Χ 6	,570 0,17	,	ļ		"114 bbls linear gel"	
	1033 FU 1067 FU	12/16/2005	·				10.79	20.58		0,17) ,514		 		"224 bbis linear gel" "135 bbis linear gel"	
1	1094 FU	12/16/2005	14.48				3.03 12	.89	X 1	4,88	7	ļ		"135 bbls linear gel" "233 bbls linear gel"	
		12/16/2005	0.02.0	h1 10	20		5.00		_	757	2.0.570		1 4 000 117	"137 bbls linear gel"	37
51-10B 51	o.o WK 783.6 W	12/30/2004 R 12/30/2004	8.03 8 13.73 16.90	10.78 10.78	.39 17.4	2	5.98 6.84 8.89		Ϋ́	2,24 525	2,570	ļ	14,008 "F	rac: slickwater36.6 tons CO2, 125 bbls _ KCl (est)" "Frac: slickwater28.5 tons CO2118 bbls KCl (est)"	Yes
8	373.6 W	R 12/30/2004	16.90	11.56		9	8.89		Χ 6	,804		ļ		"Frac: slickwater20.4 tons CO2, 102 bbls KCl (est)"	
		12/30/2004 12/30/2004	16.90 10.09		18.4 4.78	9	8.89 9.45			0,886 3,60		ļ		"Frac: slickwater32.6 ton CO2, 143 bbls KCl (est)" "Frac: slickwater 40.7 tons CO2, 185 bbls KCl (est)"	
		12/30/2004	9.48 1	3.82	21.5		9.85			3,60				"Frac: slickwater40.7 tons CO2, 190 bbls KCI (est)"	
33-11B 60	2 WR 1	/14/2005 8.52			19.5			24.20 20.13		,238	0		185	"91 bbls slickwater"	No
[595.2 W 798 WR	R 1/14/2005 6.27 1/14/2005 7.17	· 		22.4 22.5	0	7.24 18	20.13 3.78	X 8	,119 112		 	·	"94 bbls slickwater" "148 bbls slickwater"	
8	347 WR	1/13/2005 2.55	<u> </u>		14.6	2	6.96 1	8.10	Χ 6	804		ļ	<u> </u>	"377 bbls slickwater"	
		1/13/2005 14.75 1/13/2005 10.27	·	15.24	18.6 19.4		9.24 1 6.07 1:),525 0,886		ļ	ļ	"124 bbls slickwater" "155 bbls slickwater"	
44-11B 46	5.1 WR	1/11/2005			12.7	<u>'</u>	0.07 1.		X 6	690	4		4,985 "18	2 bbls WF125/75Q CO2"	No
4	183.1 W	R 1/11/2005 R 1/11/2005					ļ		X 7	,199 ,430 ,212		ļ		"185.6 bbls WF125 75/65Q CO2"	
5	540.1 W	R 1/11/2005 R 1/11/2005	. 			ļ	ļ		X 7	,430 1212		ļ		"184 bbls WF125 75/65Q CO2" "191 bbls WF125/75Q CO2"	.

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	974.1 W	R 1/11/2005	ļ						X 7	,044 1,412				"288 bbls WF125/70Q CO2"	
	1041 FU 1074 FU	1/11/2005 1/11/2005					ļ		X 1 X 8	1,412 3831				"325 bbls WF125/70Q CO2" "298.5 bbls WF125/70Q CO2"	
21-14 619		/17/2004					8.61				3		1.886 "SI	ckwater, 92 bb 1CO2 assist"	No
	684 WR		16.82 16.83				[X 7	532 121				"Slickwater, screen-out, 65 bblCO2 assist"	
	728.5 W	R 12/17/2004	16.83				7.41 8.27		X 6	827		[["Slickwater, 93 bblCO2 assist"	
	768.1 W	R 12/17/2004	12.69				8.27		X 7	,072 ,808			ļ	"Slickwater, 115 bblCO2 assist" "Slickwater, screen-out, 72 bblCO2 assist"	
	1077 FU	12/16/2004 12/16/2004	12.69 12.13 10.68 8.94 11.00				4 05		X 6	0,808 0 ,845				"Shekwater, screen-out, 72 bblCO2 assist"	
	1401 FC	12/16/2004	8 94				4.85 4.43 7.63 7.03 7.33		X 1 X 1					"Slickwater, 161 bblCO2 assist" "Slickwater, 163 bblsCO2 assist"	
	1447 FU	12/16/2004	11.00	 			7.63		X 8	246				"Slickwater, 144 bblCO2 assist"	
	1473 FU	12/16/2004	11.86	 			7.03		X 8	119				"Slickwater, 155 bblCO2 assist"	
	1558 FU	12/16/2004	11.17				7.33		X 1	0 ,79				"Slickwater, 175 bbl CO2 assist"	
	1643 FU	12/16/2004	9.51				8.62		X 1	1,939				"Slickwater, 190 bblCO2 assist"	
13-10 67		7/2004 10.56	L				9.80		Χ 6	,804	2		7,329 "Sl	ckwater/CO2 assi st20 tons CO2"	No
	761.1 W	R 12/7/2004 12.0	∮				ļ	ļ	X 6	804 804				"Slickwater/CO2 assist-95 bbls20 otns CO2"	
	956.5 W	R 12/7/2004 15.6 R 12/7/2004 11.0	ţ						X 6	,804 ,804				"Slickwater/CO2 assit-106 bb120 tons CO2" "Slickwater/CO2 assist-108 bbls20 tons CO2"	
	1003 W	R 12/7/2004 71.0	f						$\frac{A}{X} = \frac{0}{8}$,165				"Slickwater/CO2 assist-106 bbls20 tons CO2"	·
	1100 FU	12/7/2004 9.83			28.0				X 6	3804				"slickwater/CO2 assist-114 bbls20 tons"	· ·
	1184 FU	12/7/2004 7.71		.	29.0				X 6	1804				"Slickwater/CO2 assist-119 bbls20 tons"	.
	1211 FU	12/7/2004 7.14			29.0		[X 8	0,886 0,886		["Slickwater/CO2 assist-131 bbls24 tons"	
		12/7/2004 10.56		.!	31.0				X 1	0 ,886				"Slickwater/CO2 assist-164 bbls20 tons"	
	1407 FU	12/7/2004 10.19	ļ		32.0 30.0		ļ			804				"Slickwater/CO2 assist-130 bbls32 tons"	
	14/5 FU	12/7/2004 11.03 12/7/2004 11.80					ļ			0,886				"Slickwater/CO2 assist-168 bbls32 tons" "Slickwater/CO2 assist-148 bbls24 tons"	
	1571 FI	12/7/2004 11.80			28.0 29.0				X 8 X 8	165				"Slickwater/CO2 assist-140 bots24 tons"	
	1639 FU	12/7/2004 7.45		<u> </u>	29.0		5.55		X	0,886				"Slickwater/CO2 assist-177 bbls32.2 tons CO2"	.
21-10B 1	018 FU	/24/2005 12.27					7.58			957	3		14,747 "1	00 bbls clean flu id"	No
	1079 FU	1/24/2005 13.97	ļ				7.58 8.62 8.96		X 9	458				"147 bbls clean fluid"	
	1292 FU	1/12/2005 14.48					8.96			056				"168 bbl clean fluid"	
43-11B 4	83.1 WR	1/27/2005	L				l	L	X 7	,532 (,923)		190	"199 bbls WF125 75Q CO2"	No
	498.7 W	R 1/7/2005							X 6	923				"195.4 bbls WF125 75Q CO2"	
	517.2 W	R 1/7/2005	ļ	 			ļ	ļ	X 5	418		ļ	ļ	"180 bbls WF125 75Q CO2" "191 bbls WF125 75Q CO2"	
	1263.6 W	K 1/4//2005		 -		ļ	ļ	·	X 6 X 7	319 702				"191 bbls WF125 75Q CO2" "231 bbls WF125 75Q CO2"	··
	933 WR	R 1/27/2005 1/27/2005 1/27/2005		 			<u> </u>	·	A / X 8	581		 		"278 bbls WF125 75Q CO2"	··
	961 WR	1/27/2005	† -	 			†	 	X 8	383		h	 	"306 bbls WF125 75Q CO2"	·
	1098 FU	1/27/2005							X 1	1,638				"338 bbls WF125 75Q CO2"	
42-10B 5		2/3/2005							X 5	,118 ()		2,882 "17	5 bbls WF 125 75Q"	Yes
[660.2 W	R 2/3/2005	[]	[X 6	998		[["200 bbls WF 125 75Q"	
	752.2 W	R 2/3/2005	L]		l	l	L	X^{-9}	656		l	L	"262 bbls WF 125 75Q"	.]

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure · (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In. Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing		sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	817.8 V	R 2/	3/2005							X 6	,751 ,854 ,804 ,855 ,165 ,329				"206 bbls WF 125 75Q"	
	909.5 V	MR 2/.	3/2005 3/2005	· 						X 6	3854 1854				"208 bbls WF 125 75Q" "WE 125 75Q"	l
	939.4 W 1005 W 1062 FU 1081 FU	R 2/2	2005 2005							л о Х б	3855				"WF 125 75Q" "240 bbls WF 125 75Q"	·
	1062 F	2/2/	2005	+						X 8	,165				"WE 125 700"	1
	1081 F	2/2/	2005							X 9	,329				"329 bbls WF 125 70Q" "339 bbls WF 125 70Q"	
	[1377 FU	2/2/	2 005							X 9 X 1	935				"339 bbls WF 125 70Q"	
	1467 FU									X 1	4,077				"422 bbls WF 125 70Q"	
22-11B 6	80.9 WI	2/7/	2005 1/2005							X 6	,804 0 ,165 ,165			817	"WF 125 70Q CO2"	No
	730.3 V 1050 FU	VK 2/ 1 2/7/	1/2003 12005							X 8	165				"WF 125 70Q CO2" "WF 125 70Q CO2"	·
	1099 FU	2/7/	2005	+						X 7	,813 ,595 1,393				"272 bbls WF 125 70Q CO2"	
	1099 Ft 1127 Ft	2/7/	2005					·		X 6	3595				"272 bbls WF 125 70Q CO2" "285 bbls WF 125 70Q CO2"	11
	1162 FU	2/4/	2005						[X 1	1,393				"340 bbls WF 125 70Q"	1
32-10C 5	85.2 WI	2/10	2005						ļ	X 1	3,944 8			7,099 "34	7 bbls WF 125 75Q"	Yes
	649.2 V	VR 2/	9/2005 3/2005							X 6	459				"190.5 bbls WF 125 75Q CO2"	
	756.5 W 790 WI	VK 2/	9/2005 2005							X 3 X 8	1239				"163 bbls WF 125 75Q" "237 bbls WF 125 75Q CO2"	
	867.5 V	R 2/	9/2005	+				·		X 6	329				"204.5 bbls WF 125 75Q CO2"	1
	867.5 W 1031 W 1059 W	R 2/9	2005	+					·	X 9	371				"342 bbls WF 125 70Q CO2"	11
	1059 W	R 2/9	2005							X 6	3,944 8 ,459 ,239 ,190 ,329 ,371 ,768				"270.5 bbls WF 125 70Q CO2"	1
22-11C 4	49.3 WI	2/16	2005							X 5	,979 6 ,566 ,375			8,725 "17	9 bbls WF 125, 75Q CO2"	No
	620 WI	2/16	2005							X 6	566				"194 bbls WF 125, 75Q CO2"	
	759.6 V	MR 2/	16/2005 16/2005							X 8 X 6	13 / 2				"229 bbls WF 125, 75Q CO2" "204 bbls WF 125, 75Q CO2"	
	880 WE	2/16	10/2003 12005	+						X 6	3878 3878				"207.5 bbls WF 125, 750 CO2"	
22-11C 4	926.3 V	R 2/	16/2005	+					·	X 6	,838 ,878 ,688 ,709				"202.5 bbls WF 125, 75Q CO2" "230 bbls WF 125, 70Q CO2"	11
	110/4 F	4/10	3/2003		~					X 6	709				"230 bbls WF 125, 70Q CO2"	
44-4 115	FU 3/8	2005	5					6.09 15	5.38	X 1		,265		26,707 "1	60 bbls slickwater"	Yes
	1369 FU	3/8/	2005					6.69 14			0 ,428				"178 bbls slickwater"	
	1411 FU 1665 FU	3/8/	7005					8.80 16 10.90			5,947 0,324				"175 bbls slickwater" "107 bbls slickwater"	
12 12 50		-	005 10.73					7.55 22			\$,900 0			187		No
12-12 39	φ.υ W.K 1111 Fi	3/3/	2005 7.26	+				6.12 15		$\begin{array}{ccc} X & 1 \\ X & 1 \end{array}$	428			10/	"96 bbls slickwater" "109 bbls slickwater"	140
			2005 11.42	+				6.23 15		X 2	,423 0 ,732				"183 bbls slickwater"	1
33-2C 56	_		2005 15.76					9.17		X 6	844 0			0	"2912 bbls 75Q slickwater"	No
	695.9 V	R 2/	24/2005 15.4	4				8.98		X 6	,844 0 ,133 ,304 ,542	1			"4790 bbls 75Q slickwater"	
	759 WI	2/24	2005 12.51 24/2005 13.1							X 7	304	[ļ	"2111 bls 75Q slickwater" "3846 bbls 75Q slickwater"	
	[/89.1 V	$V \times 2/2$	24/2005 13.1 2005 14.62	· 				8.69 7.72		X 6	∫542 0 ,825				"3846 bbls 75Q slickwater" "5054 bbls 75Q slickwater"	
	835 2 W	VR 2/	14.62 24/2005 17.0	,				7.58		X 1 X 6	ψ,02P 1758			 -	"3034 bbis 75Q slickwater" "4002 bbls 75Q slickwater"	
]]						L	[TOWN OOD TO GOTTER MAN	
																/

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
		2/24/2005 14.75					7.93			2,39				"7158 bbls 75Q slickwater"	
13-2B 42	9.5 WR :	3/19/2005	L				6.00 23		Χ 6	720 807	0	ļ	3,944 "59	bbls slickwater"	No
	480.4 W	R 3/19/2005					6.55 23		X 9	807		ļ		"70 bbls slickwater"	
	536.8 W	R 3/19/2005		<u></u>			7.07 23		Χ 6	720				"67 bbls slickwater"	
	586.4 W	R 3/19/2005					7.89 23	5.53	X 9	,730 ,625				"67 bbls slickwater" "70 bbls slickwater"	
	6/0 WK	R 3/19/2005 3/19/2005 R 3/19/2005					5.58 18 8.27 20	8.33	X 9	,625 3,70	·			"'/0 bbls slickwater"	
	800.1 W	3/19/2005 3/18/2005					9.10 18	70	$\frac{X}{X} \cdot \frac{1}{7}$	253				"128 bbls slickwater" "68 bbls slickwater"	
	1003 FU	3/18/2005		 -			9.10 10		$\mathbf{x} \cdot \mathbf{a}$,536				"66 bbls slickwater"	
	1107 FU	3/18/2005					7.17 16	51		720				"92 bbls slickwater"	
		16/2005 8.55					7.83 10				14 10	481 "34	73 bblc 7		Yes
73-7 327.		R 3/16/2005 14.60	h				7.21 10			165	7 77 17,	101 - 5	75 0013 7	9Q x-linked gel…re servoir pressure 963 psi" "2555 bbls 70Q x-linked gel…reservoir pressure 1167 psi"	- 1 03
	808 3 W	R 3/16/2005 12.7	ř k				5.99 10			306				"2858 bbls 70Q x-linked gelreservoir pressure 1466 psi"	
	954.3 W	R 3/16/2005 12.7 R 3/16/2005 10.0	f				10.39	10.18	X 9	525		†		"3074 bbls 700 x-linked gelreservoir pressure 1736 psi"	
1	1053 FU	3/16/2005 16.64					1	10.18	X 7	719		†		"3074 bbls 70Q x-linked gel…reservoir pressure 1736 psi" "3424 bbls 70Q x-linked gel…reservoir pressure 1904 psi" "8293 bbls 70Q x-linked gel…reservoir pressure 2107"	
1	1156 FU	3/16/2005 15.49		[5.56 10	.18	X 2	0,51	3	1		"8293 bbls 70Q x-linked gelreservoir pressure 2107"	
	1402 FU	3/16/2005 13.70					[10.18	Χ 6	,823				"3077 bbls 70Q x-linked gelreservoir pressure 2531 psi"	
33-2B 43									X 7	,121	31 5		,617 "56	bbls slickwater"	No
	549.2 W	R 3/23/2005 10.6	₹				5.80 20).58	X 8	,258				"62 bbls slickwater"	
	565.7 W	R 3/23/2005 12.4 R 3/23/2005 13.8	<u> </u>				7.34 23 6.30 19	.07		0,31	3			"144 bbl slickwater" "60 bbls slickwater"	
	676.7 W	R 3/23/2005 13.8	P				6.30 19).45	Χ 6	985				"60 bbls slickwater"	
	824.2 W	R 3/23/2005 14.1: R 3/12/2005 10.9'	<u>}</u>	ļ				20.13		3,57	!			"162 bbls slickwater"	
			/				9.80 21			439				"1442 bbls slickwater"	
14-3B 88	7.3 WR	1/2/2005 20.64	ļ	ļ			8.97 10		X ε	748	5		1,901 "54	bbls slickwater"	Yes
		R 4/2/2005 14.94					10.25	21.04		,52				"111 bbls slickwater"	
		4/2/2005							_	0,81				"1215 bbls slickwater"	
41-11B 4		4/6/2005 3.00	ļ.::.	ļ	·	·	4.54 19				12 640	ļ <i>:</i>		"53 bbls slickwaterFlush with 23 bbl 6% KCL w/50% CO2""	No
	6/9./ W	R 4/8/2005 4.37					6.10 19	2.23		,380 ,213				"60 bbls slickwaterFlush with 33.5 bbl 6% KCl" "55 bbls slickwaterFlush with 34 bbl 6% KCL and 60% CO2"	
	713.3 W	R 4/5/2005 0.00 4/5/2005 12.47					7.02 18	55		0.85				"80 bbls slickwaterFlush with 40 bbls 6% KCL"	
	886 1 W	R 4/5/2005 11.09		 -			9.22 20			536				"61 bbls slickwaterFlush with 45 bbl 6% KCL"	
	1077 FU	4/5/2005 15.36					7.35 13		X 8	275		·		"105 bbls slickwaterFlush with 54 bbl 6% KCl"	
		4/5/2005	†				4.01 13			2,43	2	†		"170 bbls slickwaterFlush with 58 bbls 6% KCl"	
42-4B 52		3/29/2005 9.63					8.16 26			3,60			8.857 "F1	ush with 17 bbl 6% KCL and 7 bbl CO2"	No
1:2:12:52	730 WR	3/29/2005 16.11	 	<u> </u>			9.64 23				.· <u>·</u>	†	12221-11	"Flush with 36 bbl 6% KCL"	
	802.5 W	3/29/2005 16.11 R 3/29/2005 9.14	 				10.18		X 9	804 525		†		"Flushed with 40 bbl 6% KCL"	-
	842.2 W	R 3/29/2005 10.0	7						X 4	,667				"Screen out 22.4 bbl into flush, 19.9 bbl shy of full flushPumped 81 bbl of clean fluid and 16 tons of CO2 + sand"	2
	864.7 W	R 3/29/2005 15.4	¥	├┤	19.8	4	9.96 2	.72	X 1	1,36	5	t	 	"126 bbl clean fluid and 27 ton CO2"	
		3/29/2005 12.15	f	├┤			10.46			4.06		t	 	"180 bbl clean fluid and 39 ton CO2"	
		3/29/2005 16.33	 		22.3	9	10.68					†		"165 bbl clean fluid and 30 ton CO2"	
		4/12/2005 7.18					5.16 10			_		0 "54 h	bls slickw	nter"	Yes
. 1			1			1				اتتادو		L		1	1

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
			12/2005 7.17					6.49 1	L	X 1	0,906 ,803			"77 bbls slickwater"	
	695.2 \	MR 4/	12/2005 7.57	; ; , :				6.83 1 7.27 1			,803 ,511			"55 bbls slickwater" "58 bbls slickwater"	
	919.6 V	MR 4/	12/2005 10.2 12/2005 17.5	<u> </u>	 -			8.43 1	ψ.18 0.18	X 6	826			"63 bbls slickwater"	
	1027 F	U 4/1:	2/2005 9.19				1	6.32 1	0.18	X 9	740			"89 bbls slickwater"	
	1066 F	U 4/1:	2/2005 14.16]	6.59 1	∮ .18	X 6 X 9 X 6 X 7	891	1		"74 bbls slickwater"	
			2/2005 11.09	<u> </u>				6.14 1		X 7	,018		1	"87 bbls slickwater"	4
13-3W 4			005 17.07		-			7.58 2 7.58 2	6.69	X 6	,483 3 ,582		1,340 "60	bbls slickwater" "74 bbls slickwater"	Yes
	739 4 1	MR 4/ MR 4/	16/2005 17.0 16/2005 17.0	<u>' </u>	 			7.58 2 7.58 2						"74 DDIS SHCKWATET" "66 hbls slickwater"	
	820.2 V	MR 4/	16/2005 17.0	7	 -			7.58 1		X 1	.104 1,132			"66 bbls slickwater" "93 bbls slickwater"	.
	860.1 V	MR 4/	16/2005 17.0	7			1	7.58 1	9.00		417 071	1		"68 bbls slickwater"	
			16/2005 17.0					7.58 1		X 7	071			"100 bbls slickwater"	
11.100			6/2005 17.07		<u> </u>			7.58 1			720			"134 bbls slickwater"	 _
41-10B	679 1 3	K 4/30) 2005 11.58 30/2005 12.0					7.14 2 8.09 2		$\begin{array}{c} X & 5 \\ X & 1 \end{array}$,285 0 1,864		293	"48 bbls slickwater" "82 bbls slickwater"	Yes
			30/2005 12.0 30/2005 23.3					9.34 2	L		393			"53 bbls slickwater"	
	1081 F	U 4/3	0/2005					0.00 1			3,494			Information on stimulation missing from completion report. From WOGCC (2014) "CO2 assist"	
34-28 60					13.56		1	8.62		X 8	,165 0	1	0	"97 bbls 6% kcl 24.4 tons co2"	No
	816.3 V	MR 5/	20/2005 7.89	14.08		22.8	3	8.09 13.93		X 8	,165 ,165 ,811	1		"109-bbls 6% kcl 24.4 tons co2" "115 bbls 6% kcl 24.4 tons co2"	
	927.2 N	MR 5/	16/2005 15.5 10/2005 19.4	8 1	19.78 13.21	17.9 21.1	32.96 24.11	13.93 11.76		X 8	,165 			"115 bbls 6% kc1 24.4 tons co2"	
	1285 F	MK 3/ U 4/2	9/2005 19.4 9/2005 19.03	f	19.03		24.11 17	5.85		X 0				"172.2 bbls total co2-27 tons tons" "Acidize w/750 gal KCl, 7.5% acid"	
			4/2005 14.26		12195		1	7.89 1	5.83	X 1			-	"Total fluid pumped was 145.6 bbl, total slurry was 172 bbl, total CO2 was 33 tonLeft +/-10,000 pounds	
	<u> </u>	1	1		<u> </u>		l	ļ		L	ļļ			lbs sand in casing"	
			/2005 15.17		ļ		ļ	4.14	: -	X 0				"Acidize w/23 bbls kcl, 7.5% acidFlush w/18 bbls kcl"	
22. 2. 575			6/2005 17.93 005 17.06	 	10.63	20.6	10	10.03	16.31		0,886	200 1105	111100/1	"WF 125 SlickwaterFlush with 78 bbl 6% KCL and 50% CO2" cl 20.4 ton s co2"	NT.
32-3 373			003 17.06 25/2005 17.3	:	18.62 20.68	20.6 22.0		8.40 8.74			,133 91 30 <u>,</u> 1,037	290 "83	-pbia 6% i	"125, bbls 6% kel 32 6 tons co2"	No
			25/2005 17.3 25/2005 12.2		20.68	23.4		9.47		X 7	lő21			"104-bbls 6% kcl 20.4 tons co2" "127-bbls 6% kcl 28.5 tons co2" "133-bbls 6% kcl 20.4 tons co2"	·
	933.9 \	MR 5/	25/2005 16.5	;	22.75	26.5	4	9.47 8.48 7.07		X 9	370 931			"127-bbls 6% kcl 28.5 tons co2"	.
	1427 F	U 5/2.	5/2005 20.04		20.68	27.5	8	7.07		X 6	,931	1		"133-bbls 6% kcl 20.4 tons co2"	
	_		5/2005 22.51	_	22.75	25.5	1	6.62		_	0,412		1	"245 bbls 6% kcl 61.1 tons co2"	+
43-9 154			05 9.63 24.13 7/2005 14.80		26.20			5.41		$\frac{X}{Y} = \frac{8}{2}$,066 2 157		20,928 "1	61-bbls 6% kcl 28.5 tons co2" "143 bbls 6% kcl 20.4 tons co2"	No
			7/2005 14.80 7/2005 14.39		26.20 24.13	27.7	2	6.32		X 7 X 1	157 3,641			"14.5 DDIS 6% Kc1 20.4 tons co2" "200-bls 6% kc1 40.7 tns co2"	·
			7/2005 20.26		24.13		9	8.55	 	X 1	7,557		†	"180-bbls 6% kcl 32.6 tons co2"	
22-3 775	5.4 WR 7	7/9/20	05 16.20		Ì			7.65 9.48		X 1	0.2100		19,153 "1	00 bbls fluid"	No
	842.5 V	MR 7/	9/2005 13.54]	9.48	[X 7	354	1	Ţ	"108 bbls fluid"	
			2005 13.38	<u>.</u>	 .		ļ	8.93		X 7	,208 1,387			"185 bbls fluid"	.
	970.8 N	MK // II 7/0	9/2005 15.69 /2005 27.03	<u>-</u>	-	 	 	10.34 6.41		X I	1,387 3,950			"132 bbls fluid" "206 bbls fluid"	
1	J1100 I	y_'/_	1000 47.03		J	J	1	P.71	L	<u> 1</u> 21	J277K	-l	_L	200 000 Hua	

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (bpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1490 FU 1550 FU	6/17 6/17	/2005 20.97 /2005 27.72 /2005 21.34 /2005 22.05			28.4		8.89 8.17 9.93 15.72	16.51	X 1	6,595 6,551 6,664 378				"183 bbls 70Q x-linked fluid" "225 bbls of 70Q x-linked fluid" "226 bbls of 70Q x-linked fluid" "193 bbls of 70Q x-linked fluid"	
44-3C 56	662.3 W 706.2 W 819.9 W 884.2 W	R 6/3 VR 6/3 VR 6/3 VR 6/3	05 12.62 /2005 12.50 /2005 16.97 /2005 17.23 /2005 8.81 005 16.55					7.77 7.47 8.16 2 9.19 2 9.15 2 7.52 1	1.49 1.26 0.58	X 8 X 1 X 8 X 7 X 1			787 "88	bbls fluid	"C ement squeeze on 7/7/2005 apparently due to well making water. "116 bbls fluid" "101 bbls fluid" "95 bbls fluid" "121 bbls fluid" "121 bbls fluid" "213 bbls fluid"	No
32-2 794.	3 WR 3. 919.6 W 1088 FU 1498 FU	/28/20 vR 3/2 / 3/24 / 3/22	06 11.02 8/2006 11.8 /2006 13.87 /2006 10.54 /2006 17.93	1		40.5 18.1 20.1 19.5	2 7	7.01 1 9.43 2 12.19	9.00 0.36 21.26 16.74	X 1 X 1 X 1	3.830	2		4,450 "18	1 bbls 6% KCl, 65Q CO2" "204 bbls 6% KCl, 65Q CO2" "Breakdown with 71 bbls 6% KClFrac w/226 bbls 6% KCl, 65Q CO2" "Breakdown w/90 bbls 6% KCL, 2 gal/1000 surfactantFrac w/221 bbls 6% KCl, 65Q" "Breakdown w/24 bbls 6% KCl, 2	No
33-12 55	897.9 V 1106 FU 1443 FU 1543 FU 1576 FU 1604 FU	R 3/29 3/29 3/2/ 3/2/ 3/2/	9/2006 10.1 /2006 8.67 2006 17.04 2006 17.46 2006 15.26 2006 19.47	2		13.9 17.7 16.8	1		9.23 6.97 6.74 6.74 6.51 23.07	X 1 X 1 X 1 X 1 X 1 X 1	089 8 2,982 4,514 5,743 0,982 0,121 0,502			5,520 "16	3 bbl 6% KCL and 28 ton CO2" "190 bbl 6# KCL and 29 ton CO2" "226 bbl 6% KCL, and 30 ton CO2" "Total clean fluid 189 bbl, total slurry 227 bbl, total CO2 42 ton" "Total clean fluid 186 bbl, total slurry 212 bbl, total CO2 27 ton" "Total clean fluid 186 bbl, total slurry 212 bbl, total CO2 27 ton" "Total clean fluid 176 bbl, total slurry 201 bbl, total CO2 24 ton" "Total clean fluid 188.7 bbl, total slurry 213.6 bbl, total CO2 28 ton"	
14-21	1626 FU	3/2/	006 20.01		<u> </u>			12.84	18.10	X 1	0,455			<u> </u>	"Total clean fluid 189.6 bbl, total slurry 214 bbl, total CO2 27 ton. Total injected 352 bbl"	No
22-4 610.	671.8 W 786.4 W 928.1 W 1014 W 1130 FU 1476 FU 1512 FU 1632 FU	R 4/3 R 4/3 R 4/3/ 1/5/ 1/4/	/2007 /2007 /2007 2007 2007 2007 18.20 2007 12.07 2007 16.82		21.72 19.31		24.06 .99	11.25	18.55 16.74 18.78	X 2 X 2 X 2 X 1 X 1 X 1					bbls WF 118nitrogen assist" "85 bbls WF 118nitrogen assist" "101 bbls WF 118nitrogen assist" "122 bbls WF 118nitrogen assist" "108 bbbls WF 118nitrogen assist" "110 bbls WF 118nitrogen assist" "110 bbls WF 118nitrogen assist" "492 bbls Delta 140 15# xlink gel" "643 bbls 15# Delta x-link gelFlush w/76 bbl sleik wtr" "440 bbls Delta 140 15# x-link gelFlush w/83 bbl slick wtr"	No
42-15 660	5.6 WR 702.9 W 755.9 W 861.7 W 906.8 W 1007 W 1059 FU 1195 FU	VR 3/2 VR 3/2 VR 3/2 VR 3/2 VR 3/20 J 3/20	0/2007 0/2007 0/2007 0/2007 0/2007 /2007 /2007							X 2 X 2 X 2 X 2 X 2	,421 2 ,183 ,298 ,291 ,230 ,359 ,327 ,277 ,267	2		6,668 "14	3 bbls WF118 70Q N2" "146 bbls WF118 70QN2" "150 bbls WF118 70QN2" "160 bbls WF118 70QN2 "206 bbls WF118 70QN2" "167 bbls WF118 70Q N2" "121 bbls WF118 70QN2" "128 bbls WF 118 70QN2" "165 bbls WF 118 70QN2"	No

Well Abbreviation	Top of Stimulation Interval (m bgs)	Completion or Stimulated Formation	Stimulation Date	Break Down Pressure (MPa)	Avg Pressure During Stimulation (MPa)	Avgerage Flow during Stimulation (hpm)	Max Pressure During Stimulation (MPa)	Instantaneous Shut-In Pressure (Mpa)	Fracture Gradient (Mpa/km)	Hydraulic Fracturing	Acid Stimulation	Proppant (kg or sxs sand)	Oil Production (bbls)	Produced Water (bbls)	Description of Stimulation from Well Completion Reports and Sundry Notices	WOGCC Well File Review ³¹
	1489 FU	3/20	/2007 30.34	**************				10.16	16.74	X 1	0,43	4	601100000000000		"485 bbls YF 116ST"	
	1554 FU	3/20	/2007 12.07				1	5.31 1	3.35	X 2	0,85	3			"563 bbls YF 116ST"	-
	1608 FU	3/20	/2007 17.79		11.03	30.0		5.97 1	3.57	Χ	1				"632 bbls YF 116ST"	-
41-26															P&A after completion in 2007. No apparent production well casing. No stimulation or production.	

BWR - Basal Wind River Formation

WR – Wind River Formation

FU - Fort Union Formation

L – Lance Formation

MT – Meeteetse Formation

F- Frontier Formation

C – Cody Formation

MV - Mesaverde Formation

Table SI C3. Summary of compounds used for well stimulation. Information from Material Safety and Data Sheets provided to EPA from Encana³⁵

266

Compound	Cas No.	Product	Manufacturer	Percent	Specified Product Use
				Composition	
acetic acid	64-19-7	FE-1A Acidizing Composition H		30-60	additive
44		BA-20 Buffering Agent	Halliburton	10-30	buffer
acetic anhydride	108-24-7	FE-1A Acidizing Composition H	alliburton	60-100%	additive
acetone	67-64-1	MC-B-8630	Multi-Chem Group	15-40	biocide
alcohol (proprietary)	not provided V	FT 9527	Weatherford	1-5	flow enhancer
alcohol (oxylated)	not provided N	usol A Solvent	Halliburton	10-30	solvent
alcohols, C6—10, ethoxylated, sulfate, ammonium salts	68037-05-8 M	CFA-4013	Multi-Chem Group	<8	foaming agent/scale & corrosion inhibitor combination
alkylated quaternary chloride	not provided C	ayfix- II Material	Halliburton	not provided cla	ny stabilize r
alkylamine salts		C6106A Biocide	Nalco/Exxon Energy Chemicals 40	-70	biocide
alkyl hexanol	not provided H		Halliburton	5-10	surfactant
ammonium acetate	631-61-8	BA-20 Buffering Agent	Halliburton	60-100	buffer
ammonium bisulfite	10192-30-0 EC	1385A	Nalco/Exxon Energy Chemicals 10	-30	corrosion inhibitor
ammonium chloride	12125-02-9 CI		Halliburton	1-27	crosslinker
anionic surfactants	not provided N		Multi-Chem Group	<20	foaming agent/scale & corrosion inhibitor combination
aromatic solvent	64741-68-0 M		Multi-Chem Group	<75	defoamer/emulsion breaker
2-bromo-2-nitro-1,3-propanediol		BE-6 Microbiocide	Halliburton	60-100	biocide
2-butoxyethanol	111-76-2	F104 · · · · · · · ·	Schlumberger	10-30	
44		AQF-2 Foaming Agent	Halliburton	10-30	foaming agent foaming agent
46		MC FA-4500	Multi-Chem Group	1 10	foaming agent
46		MC FA-4500 MC FA-4295	Multi-Chem Group	<10 <11 <12	foaming agent
44		MC FA-4001	Multi-Chem Group	<11	foaming agent/scale & corrosion inhibitor combination
44		MC FA-4013	Multi-Chem Group	<12	foaming agent/scale & corrosion inhibitor combination foaming agent/scale & corrosion inhibitor combination
44		F103	Schlumberger :	10-30	'surfactant
α		Musol Solvent	Halliburton	60-100	solvent
α		Musol A Solvent	Halliburton	60-100	solvent
		WSP 9999	Weatherford	not provided so	lvent
		WSP 92011	Weatherford	15-40	not provided
44		Transfoam C	Weatherford	5-10	drilling foam
cationic polymer	not provided L		Schlumberger	10-30	clay stabilizer
copper iodide	7681-65-4	HAI-85M Acid Inhibitor	Halliburton	1-5	corrosion inhibitor
diammonium peroxidisulphate	7727-54-0	J218	Schlumberger	60-100	breaker
2.2-dibromo-3-		-3S Bactericide	Halliburton	60-100	biocide
nitrilopropionamide	10222-01-2 BF				
1' 4 4 4 4		B069	Baker Hughes	60-100	biocide
diethylene glycol	111-46-6	AQF-2 Foaming Agent	Halliburton	2-10	foaming agent
		Triethylene glycol	Shell Chemicals	0.01-5.0	not provided
diesel fuel #2	68476-34-6 LC		Halliburton	30-60	liquid gel concentrate
·		LGC-8	Halliburton	30-60	liquid gel concentrate
**		J877	Schlumberger	30-60	guar polymer slurry
dimethyl formamide	68-12-3	HAI-85M Acid Inhibitor	Halliburton	10-30	corrosion inhibitor
d-limonene	5989-27-5	WFT 9527	Weatherford	3-7	flow enhancer
EDTA/copper chelate		AT-3 Activator	Halliburton	10-30	activator
ester salt	not provided F		Schlumberger	30-60	foaming agent
ethanol	64-17-5	LOSURF-300M	Halliburton	30-60	surfactant
44	44	F104	Schlumberger	10-30	foaming agent

•

Compound	Cas No.	Product	Manufacturer	Percent Composition	Specified Product Use
ethoxylated alcohol	9016-45-9	WFT 9785	Weatherford	1-3	foaming agent
ethoxylated alcohol linear (1)	not provided F		Schlumberger	5-10	surfactant
ethoxylated alcohol linear (2)	not provided F		Schlumberger	5-10	surfactant
ethoxylated alcohol linear (3)	not provided F		Schlumberger	5-10	surfactant
ethylene glycol	107-21-1	WSP 9030	Weatherford	40-70	hydrate inhibitor
"	"	MC FA-4001	Mult-Chem Group	54-58	foaming agent/scale & corrosion inhibitor combination
44	44	MC FA-4500	Mult-Chem Group	<33	foaming agent
44	44	MC FA-4295	Mult-Chem Group	1-5	foaming agent
44	44	MC WC-7549	Mult-Chem Group	<70	water clarifier
44	44	Artictherm E-50	Ouadra	47-53	heat transfer fluid
2-ethyl hexanol	104-76-7	Klean-Break	Weatherford	10-30	not provided
ethyl octynol		I-85M Acid Inhibitor	Halliburton	1-5	corrosion inhibitor
glutaraldehyde	111-30-8	MC B-8630	Multi-Chem Group	10-30	biocide
heavy aromatic petroleum naptha	64742-94-5 HY		Halliburton	30-60	surfactant
44	44	Pad acid with aromatic naphtha	Halliburton	10-50	pad acid
44		LOSURF-300M	Halliburton	10-30	surfactant
44		LOSURF-259	Halliburton	5-10	surfactant
hydrochloric acid	7647-01-0.	Pad acid with aromatic naphtha		10-30	pad acid
"		Hydrochloric acid	Halliburton	30-60	solvent
hydrotreated light petroleum distillates	64742-47-8 B2	3	Schlumberger	40-60	polymer slurry
inner salt of alkyl amines		HC-2	Halliburton	10-30	additive
isooctanol	26952-21-6 HY	TFLO IV	Halliburton	5-10	surfactant
isopropanol	67-63-0 · ·	LOSURF-259 · · ·	· Halliburton · · · · · ·	30-60 · · ·	· surfactant
44	٤٤	F103	Schlumberger	10-30	surfactant
44	44	MC DF-7120	Multi-Chem Group	not provided de	foam er/emulsion breaker
44	44	MC FA-4295	Multi-Chem Group	1-5	foaming agent
44	44	MC FA-4001	Multi-Chem Group	<8	foaming agent/scale & corrosion inhibitor combination
44	44	MC FA-4013	Multi-Chem Group	<3	foaming agent/scale & corrosion inhibitor combination
"	44	MC EB-1790	Mult-Chem Group	<1	emulsion breaker
44		Klean-Break	Weatherford	10-30	not provided
44	44	HAI-85M Acid Inhibitor	Halliburton	10-30	corrosion inhibitor
44	٠	EC1385A	Nalco/Exxon Energy Chemicals 10	-30	corrosion inhibitor
44	44	Transfoam C	Weatherford	10-30	drilling foam
44		WFT 97112W	Weatherford	1-3	mixture
		EC6106A Biocide · · ·	Nalco/Exxon Energy Chemicals 26	-40 · · ·	· Biocide
methanol	67-56-1	Klean-Break	Weatherford	7-13%	not provided
44		L55	Schlumberger	not provided cl	
"	44	WSP 9030	Weatherford	40-70	hydrate inhibitor
		WSP 92011	Weatherford	15-40	not provided
		WFT 97112W	Weatherford	15-40	mixture
		WFT 9785	Weatherford	10-30	foaming agent
		MC FA-4295	Multi-Chem Group	1-25	foaming agent
۷۲	44	MC FA-2013	Multi-Chem Group	<25	foaming agent/scale & corrosion combination
44	44	EC9037a Surfactant	Nalco/Exxon Energy Chemicals 20	-40	surfactant
44	44	Methanol	Murex N.A.	99.8	methanol
	1			1	

Compound	Cas No.	Product	Manufacturer	Percent	Specified Product Use
methyl isobutyl ketone	108-10-1	WFT 9527	Weatherford	Composition 1-5	flow enhancer
2- monobromo-3- nitrilopropionamide	1113-55-9	BE-3S Bactericide	Halliburton	1-5	biocide
naphthalene	91-20-3	HYFLO IV	Halliburton	5-10	surfactant
٠٠٠	٠	LOSURF-300M	Halliburton	0-1	surfactant
2,2`,2`-nitrilotriethanol	102-71-6	J318	Schlumberger	60-100	breaker
organic salt	not provided F	E-3A	Halliburton	60-100%	iron control agent
petroleum raffinates	not provided K	ean-Break	Weatherford	30-60	not provided
polyepichlorohydrin, trimethylamine quaternized	51838-31-4 Cl	a-Sta XP Additive	Halliburton	30-60%	clay stabilizer
polyether	not provided E	C9037A	Nalco/Exxon Energy Chemical	ls 20-40	surfactant
potassium hydroxide	1310-58-3	CL-31	Halliburton	<5	crosslinker
potassium metaborate	13709-94-9 CI	-31	Halliburton	30-60	crosslinker
44	44	CL-31/Water Blend	Halliburton	5-10	crosslinker
propargyl alcohol	107-19-7	HAI-85M Acid Inhibitor	Halliburton	5-10	corrosion inhibitor
proprietary blend	not provided N	C FA-4001	Multi-Chem Group	<8	foaming agent/scale & corrosion inhibitor combination
proprietary blend	not provided N	C FA-4013	Multi-Chem Group	<12	foaming agent/scale & corrosion inhibitor combination
quaternary ammonium salts	not provided H	AI-85M Acid Inhibitor	Halliburton	10-30	corrosion inhibitor
sodium chloride	7647-14-5	HC-2	Halliburton	5-10	additive
sodium persulfate	7775-27-1	SP Breaker	Halliburton	60-100	breaker
toluene	108-88-3	WFT 9527	Weatherford	3-7	flow enhancer
triethylamine hydrochloride	593-81-7	EC1385A	Nalco/Exxon Energy Chemical	ls 1 - 5	corrosion inhibitor
triethylene glycol	112-27-6	Triethylene glycol	Shell Chemicals	95.0-99.9	not provided
1,2,4-trimethylbenzene	95-63-6	LOSURF-300M	Halliburton	0-1	surfactant
xylene ·	1330-20-7	WFT 9527 ·	Weatherford	40-70	flow enhancer
	44	MC DF-7120	Multi-Chem Group	not provided de	foam er/emulsion breaker
zirconium complex	not provided C	L-12	Halliburton	30-60	crosslinker

Table SI C4. Specified volumes of "gel" used with CO₂ foam during hydraulic fracturing between 2001 and 2002 (1 barrel or bbl = 42 gallons or 159 L)

Year	Production Well	Volume
2001 Pa	villion Fee 11-3	51 bbls
44	Pavillion Fee 43-11	157 bbls
2002 Pa	villion Fee 41-10	96 bbls
44	Pavillion Fee 33-11	221 bbls
44	Tribal Pavillion 43-10 646	bbls
44	Pavillion Fee 24-3B	169 bbls
44	Pavillion Fee 11-11B	728 bbls
44	Pavillion Fee 31-11	528 bbls
44	Pavillion Fee 23-3	92 bbls
44	Pavillion Fee 23-3	584 bbls
44	Pavillion Fee 32-11	715 bbls
44	Pavillion Fee 44-11	491 bbls
44	Pavillion Fee 14-3W	206 bbls
44	Pavillion Fee 13-11B	363 bbls
44	Pavillion Fee 14-3W	357 bbls

Table SI C5. Specified volumes of "WF-125, WF-130, WF-135, and WF-12" polymer slurries with CO_2 and N_2 foam during hydraulic fracturing from 2001 to 2007 (1 barrel or bbl = 42 gallons or 159 L)

Year	Production Well	Polymer Slurry	Use of 6% KCl solution	Use of 10% Methanol Solution	Foam	Volume of Polymer Slurry (per well)				
2001	Tribal Pavillion 43-1	WF-125	Yes	No	CO ₂ 658	bbls				
44	Tribal Pavillion 43-1	WF-125	Yes	No	CO ₂ 658	bbls				
44	Pavillion Fee 21-10W	WF-125	Yes	No	CO ₂ 142	0 bbls				
44	Tribal Pavillion 12-5	WF-125	Yes	Yes	CO ₂ 506	bbls				
44	Pavillion Fee 11-11	WF-125	Yes	Yes	CO ₂ 1,4	71 bbls				
44	Pavillion Fee 13-12	WF-125	Yes	Yes	CO ₂ 915	bbls				
44	Pavillion Fee 13-15	WF-125	Yes	Yes	CO ₂ 805	bbls				
44	Tribal Pavillion 34-2	WF-130	Yes	Yes	CO ₂ 1,6	52 bbls				
44	Tribal Pavillion 32-1	WF-130	Yes	Yes	CO ₂ 912	bbs				
44	Tribal Pavillion 14-10	WF-130	Yes	Yes	CO ₂ 673	bbls				
44	Pavillion Fee 34-3R	WF-130	Yes	Yes	CO ₂ 718	bbls				
44	Pavillion Fee 12-11W	WF-125, WF-130	Yes	Yes	CO ₂ 927	bbls				
44	Pavillion Fee 21-13	WF-135	Yes	Yes	CO ₂ 549	bbls				
44	Pavillion Fee 13-11	WF-135	Yes	Yes	CO ₂ 1,1	55 bbls				
44	Tribal Pavillion 43-2	WF-135	Yes	Yes	CO ₂ 1,1	77 bbls				
2004	Tribal Pavillion 43-10B	WF-12		No	CO ₂ ~28	6 bbls				
2005	Pavillion Fee 43-11B	WF-125	?	No	CO ₂ 362	bbls				
44	Pavillion Fee 44-11B	WF-125	?	No	CO ₂ 1,4	72 bbls				
44	Pavillion Fee 43-11B	WF-125	?	No	CO ₂ 1,5	43 bbls				
44	Tribal Pavillion 42-10B	WF-125	?	No	CO ₂ 2,1	41 bbls				
44	Pavillion Fee 22-11B	WF-125	?	No	CO ₂ 897	bbls				
44	Tribal Pavillion 32-10C	WF-125	?	No	CO ₂ 1,5	64 bbls				
44	Pavillion Fee 22-11C	WF-125	?	No	CO ₂ 1,4	46 bbls				
2007	Pavillion Fee 22-4	WF-118	?	No	N_2	612 bbls				
44	Tribal Pavillion 42-15	WF-118, YF116ST	?	No	N ₂	1,386 bbls of WF-118 and 1,680 bbls of YF116ST				

Year	Production Well	Foam	Volume (per well)
2004 T	ibal Pavillion 43-10B CO	2	1,494 bbls
	Tribal Pavillion 33-10B C	D 2	3,432 bbls
	Tribal Pavillion 42-10	CO_2	122 bbls
	Pavillion Fee 13-10	CO_2	1,731 bbls
	Tribal Pavillion 21-14	CO_2	1,353 bbls
	Pavillion Fee 31-10B	CO_2	863 bbls
2005 Pa	villion Fee 33-11B	None	949 bbls
	Tribal Pavillion 41-3	None	524 bbls
	Tribal Pavillion 33-2C?		29,873 bbls
	Tribal Pavillion 42-3	None	201 bbls
	Blankebship Fee 4-8	None	121 bbls
	Tribal Pavillion 12-12	None	388 bbls
	Pavillion Fee 44-4	None	620 bbls
	Tribal Pavillion 33-2B No	ne	1,442 bbls
	Tribal Pavillion 13-2B No	ne	1,249 bbls
	Pavillion Fee 14-3B	None	1,380 bbls
	Pavillion Fee 41-11B	None	584 bbls
	Tribal Pavillion 21-11B N	one	557 bbls
	Pavillion Fee 13-3W	None	595 bbls
	Pavillion Fee 34-3B	None	139 bbls
	Pavillion Fee 41-10B	None	183 bbls

Figure SI C1. Elevation (m) Absolute Mean Sea Level (AMSL) of open intervals of domestic wells <1 km from production wells, EPA monitoring wells, surface easing with invert mud, surface easing without invert mud, top of primary cement with invert mud, and top of cement without invert mud. Median land surface elevation = 1636 m AMSL.

Figure SI C2. Instantaneous Shut-In Pressure (ISIP) values for well stimulation with depth

285	D – Extended Discussion on Impact to USDWs and Usable Water from Well Stimulation
286	
287	D.1 Examples of Potential Loss of Zonal Isolation (Data Source: Well Completion Reports and
288	Sundry Notices, Seach by API Number in Table SI C1)
289	- In 1979, 645 bbls of "gelled KCl water" and N $_2$ foam was used for hydraulic fracturing at Unit
290	41X-10. In 1980, Unit 41X-10 was recommended for plugging and abandonment in a
291	memorandum because of "problems with water production and casing failure." The well was
292	plugged and abandoned in 1981. There are no posted sundry notices documenting casing failure.
293	Depth and date of casing failure is unknown.
294	- In 1977, 102,000 gallons of "gel water" was used for hydraulic fracturing at Blankenship 4-8 at
295	1484 m bgs. During recompletion activities in January 2005, hole(s) in casing were discovered
296	between $312 \text{ m} - 322 \text{ m}$ bgs. The time in which hole(s) in casing formed between 1977 and 2005
297	(28 years) is unknown. Two cement squeezes to remediate casing were performed on 1/25/2005
298	and 1/27/2005. On 2/8/2005, 121 barrels of slickwater and CO ₂ foam in a 6% KCl solution was
299	used for hydraulic fracturing at a depth of 784 m bgs at a maximum stimulation pressure of 38.2
300	MPa (5546 psig). On 2/12/2005, 104 barrels of slickwater was used for hydraulic fracturing at
301	631 m bgs at a maximum stimulation pressure of 39.4 MPa (5711 psig). In a well schematic dated
302	10/5/2011, parted casing was noted at 790 m and 792 m bgs with an assigned date of $12/21/2006$.
303	The date in which casing actually parted though is unclear.
304	- In September 1982 during recompletion, a packer w as set a 1004 m bgs in Tribal 21-15 and 1000
305	gallons of a 15% HCl solution was used for acid stimulation at 799 m bgs. In October 1982, a
306	cement squeeze was performed at 472 m bgs. In March 2012, a sundry notice indicated "failed
307	casing" between 224 and 337 m bgs. It is unclear when casing failed. On 8/14/2012, WYDEQ ³⁶
308	requested information from the Bureau of Land Management (BLM) on stimulation practices at
309	Tribal 21-15 to evaluate the potential release of stimulation fluid at 472 m bgs. In a response
310	dated 8/23/2012, BLM ³⁷ reiterated previously publically available information on well
311	completion at this production well providing no additional insight on the potential for release of
312	stimulation fluid through parted casing.
313	- On 12/15/2004, a cement bond log (CBL) conducted at Tribal Pavillion 42-10 indicated top of
314	primary cement at 792 m bgs. On 12/16/2004, 122 barrels of slickwater was used for hydraulic
315	fracturing ("frac down casing") at 807 m bgs - only 15 m below top of primary cement. On
316	12/17/2004, a cement squeeze was performed at 807 mbgs for "casing remediation." On

317	12/20/2004, another CBL at 3.45 MPa (500 psig) was conducted to approximately 741 m bgs
318	with high amplitude readings above this depth indicating poor casing to cement bonding. On
319	12/20/2004, 86 barrels of "fluid" was used for hydraulic fracturing at 763 m bgs.
320	- On 12/29/2004, a CBL conducted at Pavillion Fee 1 2-11B indicated top of primary cement at 299
321	m bgs. On 12/29/2004, 110 barrels of "CO2 assisted gelled water" was used for hydraulic
322	fracturing at 429 m bgs. On 1/7/2005, a cement squeeze was performed above the stimulated
323	interval at 283 m bgs. No explanation for a cement squeeze above primary cement following
324	hydraulic fracturing was provided.
325	- On 1/6/2005 a CBL conducted on Pavillion Fee 21-1
326	m bgs. On 1/12/2005, 168 barrels of "clean fluid" was used for hydraulic fracturing at 1292 m
327	bgs - only 18 m below top of primary cement. On 1/17/2005 and 1/19/2005, cement squeezes
328	were performed at 1216 m and 1125 m bgs, respectively. On 1/24/2005, 247 barrels of "clean
329	fluid" was used for hydraulic fracturing at 1049 m and 1079 m bgs. On 1/25/2005 and 1/27/2005
330	cement squeezes were performed at 928 m and 244 m bgs, respectively. No explanation for
331	cement squeezes following hydraulic fracturing was provided.
332	- In October 2004, a CBL conducted at Pavillon Fee 34-3B indicated top of primary cement at 838
333	m bgs. In November 2004, "clean fluid" and CO2 foam was used for hydraulic fracturing between
334	1039 m and 1637 m bgs. On 4/3/2005, a cement squeeze was performed above stimulated
335	intervals at 823 m bgs. On 4/19/2005, 139 barrels of slickwater was used for hydraulic fracturing
336	at 951 m bgs. On 4/21/2005, a cement squeeze was performed at 256 m bgs. No explanation for
337	cement squeezes following hydraulic fracturing was provided.
338	- On 12/29/2004 a CBL was conducted at Pavillion Fe e 31-10B with top of primary cement at 411
339	m bgs. On 12/30/2004, \sim 36,000 gallons of slickwater with with CO ₂ assist was used for
340	hydraulic fracturing between 519 m and 1508 m bgs. On 1/8/2005, 1/13/2005, and 1/18/2005,
341	cement squeezes were performed above stimulated intervals at 381m, 305m, 213 m bgs,
342	respectively. No explanation for cement squeezes following hydraulic fracturing was provided.
343	- On 11/8/2004, a CBL conducted at Tribal Pavillion 43-10B indicated top of primary cement at
344	357 m bgs. In November 2005, hydraulic fracturing was conducted over 13 intervals from 552 m
345	to 1667 m bgs using ~80,000 gallons of slickwater with CO ₂ assist and CO ₂ foam using WF-12
346	having a polymer loading of 25 lb/1000 gallons. On 1/14/2005, a cement squeeze occurred at 326
347	m bgs to repair a "casing leak." In is unclear when this casing leak occurred.

348	- On 2/28/2005, a CBL was conducted at Tribal Pavil lion 12-12 that indicated top of primary
349	cement at 290 m bgs. On 3/3/2005, 387 barrels of slickwater was used for hydraulic fracturing
350	from 599 m to 1177 m bgs. On 3/9/2005, cement squeeze performed at 259 m bgs. No
351	explanation for a cement squeeze following hydraulic fracturing was provided
352	- On 2/8/2002, a cement "void" between 777m – 960 m bgs was noted in a well completion report
353	at Pavillion Fee 11-11B. The region without cement was clearly evident on a CBL (date not
354	visible). On 2/18/2005, 232 barrels of "clean fluid" was used for hydraulic fracturing at 964 m
355	bgs - only 4 m below void. A maximum stimulation pressure of only 1.3 MPa (190 psig) was
356	noted indicating little resistance to flow.
357	D.2 Omissions to Bradenhead Testing
358	- Bradenhead testing was not conducted at John K. C oolidge 1-4, Fike Tribal A-1, Tribal NP 31-
359	11X, Tribal Pavillion 44-3, Tribal Pavillion 15-21X, and Tribal 21-14.
360	- Pressure build-up following detection of brandenh ead pressure was not measured at Ora Wells
361	14-12, Tribal Pavillion 24X-3, Tribal Pavillion 11-10, Tribal Pavillion 23-11, Pavillion Fee 42X-
362	9, Tribal Pavillion 43-2, Pavillion Fee 34-11, Pavillion Fee 34-11, Pavillion Fee 21-10W,
363	Pavillion Fee 11-3, Pavillion Fee 34-3B, and Tribal Pavillion 24-2.
364	- Gas samples at well exhibing bradenhead pressure were not collected at Tribal Pavillion 31-15,
365	IND 14-20-258-41X-2, Tribal Pavillion 33-2, Tribal Pavillion 44-1, Pavillion Fee 44-3C, Tribal
366	Pavillion 32-10, Tribal Pavillion 44-1, and Pavillion Fee 21-10.
367	D.3 Summary of Bradenhead Testing with Water Flow
368	- A CBL conducted on 12/22/2002 at Pavillion Fee 12 -11W indicated top of primary cement at
369	~594 m bgs. During Bradenhead testing in July 2012, 4303 barrels of water flowed to the surface
370	over a 15-day period. Bradenhead pressures after 24 hour and 7-day shut-in periods were 85 and
371	979 kPa (142 psig), respectively. On 10/3/2012, a mechanical integrity test (MIT) was conducted
372	above 764 m bgs (top perforation at 771 m bgs) at 3.4 MPa (500) psig for 30 minutes - holding
373	pressure without loss, indicating water flow outside production casing. On 5/17/2013, cement
374	squeezes were performed at 146 m and 442 m bgs.
375	- A CBL conducted on 2/23/2001 at Tribal Pavillion 13-2 indicated top of primary cement at 201 m
376	bgs. During Bradenhead testing in January 2012, pressure after a 7-day shut-in period was 1.45
377	MPa (210 psig). During testing in July 2012, 3785 barrels of water flowed to the surface over a
378	15 day period. Bradenhead pressures during a 7-day shut-in period was 0.965 MPa (140 psig).

379	- A CBL conducted on $7/23/1979$ at Tribal 44-10 indi cated top of primary cement at \sim 594 m bgs.
380	During Bradenhead testing in May 2012, 410 barrels of water flowed to the surface during the
381	first 8 hours of a 15-day test period. Bradenhead pressure during subsequent a subsequent 7-day
382	shut-in period was 0.724 MPa (105 psig).
383	- At Tribal Pavillion 13-1, During Bradenhead testi
384	surface during the first hour of the 15 day testing period. Subsequent Bradenhead pressure after a
385	7-day shut-in period 0.689 MPa (100 psig).

D.4 Summary of Major Ion Concentrations in Produced and Bradenhead Water

Table SI D1. Major Ions in Produced and Bradenhead Water. Data obtained using API number in Table SI C1

Well	Stimulation Dates	Sample	pН	SC	Na	K	Ca	Mg	Cl	SO4	Fe	CO3	HCO3	TDS
D , 1	***	Date		(µS/cm)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Produced 12-1	Nov 2001	8/8/2007	6.86	5019	1323	270	71	30	1753	34	48.45	0	903	4260
14-1	Oct 1964, Apr	8/14/2007	7.15	3996	785	160	205	29	956	49	190.60	0	902	3325
14-1	1993, Dec 1999	0/14/2007	7.15	3770	703	100	203		750	"	170.00	"	702	3323
22-1	Nov 2001	8/8/2007	7.71	3389	945	34	44	11	882	9	12.07	0	1001	2771
24-1	Mar 2001 ^a	8/8/2007	8.71	3186	970	112	12	7	985	7	4.81	68	978	2585
33-1	Sep 2001 ^a	8/8/2007	7.70	3684	916	78	46	13	821	12	8.67	0	907	3040
43-1	Aug 2001	8/8/2007	7.73	2322	667	21	15	4	503	5	1.97	10	919	1796
44-1	Mar 2001 ^a	8/8/2007	7.51	3934	1051	94	39	13	1263	8	13.87	0	737	3269
24-2	Oct 2004	8/13/2007	8.28	4940	1479	202	29	14	1774	7	0.25	7	1235	4188
32-2	Mar 2006	8/13/2007	6.01	3823	768	268	67	14	817	11	57.90	0	807	3167
33-2	Oct 1994, Oct 2000 8/		8.63	2703	769	57	18	8	853	6	31.58	20	614	2144
11-3	Dec 2001	8/13/2007	8.35	2107	596	45	10	3	366	8	2.63	14	963	1600
13-3W	Apr 2005	8/20/2007	6.61	5702	1060	233	25	21	1315	485	165.05	0	899	4884
14-3W	Apr 2002	8/14/2007	8.20	4813	1538	88	7	7	1089	8	4.11	12	2243	4072
24X-3	Nov 1965, Jun 1966, 1995?°	8/14/2007	8.26	5159	1572	47	2	3	1094	17	5.95	11	1094	4388
31X-3	Aug 2001	8/13/2007	8.09	2512	647	153	13	6	595	34	0.00	0	802	1970
32-3	May 2005	8/13/2007	8.13	3706	1264	17	13	3	1194	4	4.82	35	1072	3060
33-3	May 1999	8/13/2007	8.99	3270	1072	53	7	4	574	43	5.00	159	1496	2662
44-3	Apr 1999	8/13/2007	8.34	2364	697	20	19	4	387	5	4.48	11	1113	1834
1-4	May 1982, 2005?°	8/20/2007	8.10	2438	608	81	22	6	585	135	2.00	0	788	1902
42-4B	Apr 2005	8/20/2007	8.13	2252	615	34	25	7	603	17	1.75	0	763	1732
43-4	Mar 2005	8/20/2007 8/8/2007	8.30	3343 2874	903	59 87	12	3	915 797	16	6.57	100	1402 1067	2729 2300
12-5	May 2001 Sep 2001 ^a	8/8/2007	8.88	10022	2379	462	284	102		22	46.00	0		8830
12-7 41-9	Sep 2001" Aug 1979, Oct	8/8/2007	5.93 8.29	2342	654	30	18	5	4365 693	6	3.94	17	432 615	1814
	2004													
42X-9	Feb 1999 ^a	8/20/2007	8.15	7739	2247	106	9	7	793	13	13.72	0	4301	6745
12-10	Oct 2001	8/20/2007	8.08	2876	827	90	10	6	808	9	7.52	29	1012	2302
14-10	Apr 2001	9/19/2007	6.30	6661	1770	116	284	41	1202	1960	150.90	0	1739	5760
23-10W D		8/20/2007	8.00	3742	1054	86	12	5	694	46	4.46	0	1783	3093
31-10	Jun 1994, Jan 2002 8/2		8.26	4639	1497	25	13	6	1044	6	14.39	12	2025	3913
32-10B	Mar 2002 Feb 2005	8/14/2007 8/20/2007	8.21 8.05	5063 1779	1593 421	17 15	10 15	6	1022 131	4 175	3.36 1.82	10	2152 630	4300 1300
32-10C 33X-10	Feb 1965	3/29/1965	NM	NM	1298	NM	11	3	940	305	NM	72	1342	3971
33-10	Apr 1999	8/20/2007	7.62	4409	1298	218	12	6	894	46	5.03	0	2254	3703
41-10	Jan 2002	8/14/2007	5.90	21177	2499	1911	1771	131	5945	2063	70.60	0	3358	19020
43-10	Sep 1994, Feb 2002 8/		6.96	5064	1656	57	6	3	1280	292	71.95	0	1873	4301
11-11	May 2001 ^a	8/13/2007	7.08	2477	656	68	30	5	432	12	59.80	0	1048	1938
12-11	Oct 1993, Nov 2004	8/14/2007	7.11	2576	753	120	22	6	411	135	50.25	0	1062	2028
12-11B	Dec 2004	8/14/2007	8.45	2941	816	194	11	9	633	7	5.66	31	1296	2362
21-11	Mar 1979	8/13/2007	7.61	3304	938	123	40	11	1079	9	27.45	0	762	2693
44-11	Feb 2002	8/28/2007	5.59	2140	510	29	39	3	363	255	109.20	0	647	1630
33-12	Mar 2006	8/14/2007	7.98	2718	745	84	18	8	611	43	4.47	0	993	2158
42X-12	Jan 1974, 2004?°	8/14/2007	7.20	1619	303	144	23	3	545	14	13.30	0	90	1154
21-14	Dec 2004	8/28/2007	7.53	5242	1361	253	55	15	1522	7	4.80	0	1431	4464
Bradenhe														
13-1	Jun 2001 ^a	4/26/2012 ^d	10.86 3	3196	2700	6000	39	1.6	88	2100	1.67	17000	<2	30000
13-2	Jan 2002	4/24/2012 ^d	9.57	1341	230	3.7	32	2.7	53	170	7.36	110	290	900
44-10	Dec 1979, 2004? ^c	4/23/2012 ^d	8.64	903	280	9.6	15	2.3	7.1	16	6.45	40	240	500
12-11W M		4/24/2012 ^d	9.16	1056	180	3.1	7.4	2.5	67	130	4.88	37	210	640

a-no information on stimulation

Bromide and fluoride not analyzed

b - formation water sample

c - Possible recompletion

d – date of sundry notice

 $NM-not\ measured$

Table SI D2. String gas and bradenhead gas samples collected at production wells having sustained casing pressure. Concentrations in mole fractions x 100. Data obtained using API number in Table SI C1

AIIIIIIII	ber in Tau		1				in company of the control of the con	4					Easter Statement Statement			1		1		Engles control of	de a sum ou a su com	Processor and the second	romania de la compania del compania del compania de la compania del la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania della compania de la compania de la compania della compania de la compania della compania d
Well	Sample Date	Gauge Pressure (MPa)	τ (ο)	Nitrogen	Carbon Dioxide	Methane	Ethane	Propane	iso-butane	Butane	iso-pentane	Pentane	Hexanes	Heptanes	Octanes	Nonanes	Decanes +	Benzene	Toluene	Ethylbenzene	xylenes	Uns	C1/C1-C5)
String Gas	Samples																						
13-1	6/11/2012	0.31	19	0.7266	0.0000	91.9740	4.7594	1.3181	0.4097	0.3223	0.1541	0.0885	0.0968	0.0780	0.0443	0.0030	0.0000	0.0116	0.0099	0.0004	0.0035	100.0002	0.934104
22-1	6/11/2012	2.69	19	0.8759	0.0709	92.8305	4.8352	0.0000	0.4877	0.4158	0.1787	0.1067	0.0997	0.0598	0.0259	0.0018	0.0000	0.0095	0.0003	0.0001	0.0014	99.9999	0.945434
13-2	3/5/2012	0.04	?	0.5499	0.0947	91.0554	4.3084	1.5168	0.5086	0.4560	0.3103	0.1995	0.3069	0.2921	0.2429	0.0188	0.0547	0.0331	0.0390	0.0006	0.0123	100.0000	0.933556
13-2B	6/21/2012	0.10	29	0.7071	0.0733	91.0681	4.8186	1.4356	0.4963	0.4280	0.2419	0.1538	0.1977	0.1692	0.1231	0.0141	0.0053	0.0267	0.0231	0.0013	0.0168	100.0000	0.930177
32-2	6/21/2012	0.26	27	0.6555	0.0052	92.4055	4.4755	1.1925	0.3879	0.3180	0.1612	0.0966	0.1117	0.0908	0.0596	0.0056	0.0017	0.0140	0.0115	0.0006	0.0068	100.0002	0.93824
33-2B	3/5/2012	0.00	21	0.6409	0.0940	92.1420	4.4226	1.3698	0.3864	0.3142	0.1595	0.0954	0.1176	0.1014	0.0925	0.0131	0.0123	0.0129	0.0138	0.0008	0.0108	100.0000	0.936936
13-3W	4/4/2012	0.26	15	0.3936	0.0502	91.7674	4.4037	1.5981	0.4771	0.4425	0.2330	0.1477	0.1640	0.1525	0.0942	0.0117	0.0045	0.0236	0.0215	0.0027	0.0122	100.0002	0.93298
22-3 32-3	6/11/2012 4/4/2012	0.37 0.27	19 13	0.6833 0.3921	0.0005 0.1865	94.3455 94.5473	3.3703 3.6026	0.6320 0.8409	0.2546 0.1526	0.1749 0.1131	0.1493 0.0410	0.0771 0.0218	0.1324 0.0259	0.1120 0.0323	0.0416 0.0220	0.0047	0.0022 0.0018	0.0149	0.0003	0.0014 0.0006	0.0030	100.0000 99.9999	0.956853 0.953812
44-3C	4/4/2012	1.79	21	0.4216	0.1036	94.4928	3.3318	0.8565	0.1326	0.1131	0.0410	0.0218	0.0233	0.0323	0.0220	0.0057	0.0000	0.0048	0.0072	0.0006	0.0049	100.0002	0.955341
43-4	4/4/2012	0.22	18	0.3756	0.0295	95.5235	3.1025	0.5134	0.1551	0.0871	0.0564	0.0247	0.0438	0.0485	0.0261	0.0037	0.0005	0.0060	0.0019	0.0002	0.0015	100.0000	0.962442
44-4	4/4/2012	0.26	18	0.3952	0.1602	93.4057	3.4166	1.2606	0.4024	0.2753	0.1580	0.0866	0.1206	0.1420	0.0984	0.0193	0.0096	0.0211	0.0127	0.0054	0.0102	99.9999	0.948813
12-5	6/11/2011	2.96	19	0.9390	0.0000	91.3650	4.9090	1.5679	0.4548	0.3678	0.1574	0.0912	0.0803	0.0419	0.0172	0.0013	0.0000	0.0060	0.0000	0.0002	0.0009	99.9999	0.929442
43-9	4/4/2012	0.32	19	0.5128	0.6048	93.4457	3.6813	0.9650	0.2221	0.1402	0.0846	0.0418	0.0775	0.0989	0.0663	0.0144	0.0032	0.0167	0.0119	0.0042	0.0086	100.0000	0.950869
13-10	12/23/2011	0.28	-12	0.4951	0.0592	93.8277	3.7263	0.9381	0.2886	0.2159	0.1154	0.0656	0.1011	0.1036	0.0596	0.0000	0.0000	0.0021	0.0020	0.0000	0.0000	100.0003	0.949927
31-10	5/14/2012	0.65	-11	0.3529	0.0006	93.9675	3.8277	0.9373	0.3053	0.2356	0.1307	0.0653	0.0851	0.0703	0.0190	0.0000	0.0000	0.0024	0.0003	0.0000	0.0000	100.0000	0.948847
32-10C 41-10B	3/5/2012 3/2/2012	0.22	?	0.4696 0.5704	0.1336	94.0435 92.6355	3.5933 4.2192	0.8749 1.0353	0.2624 0.3903	0.1923 0.3289	0.1063 0.1784	0.0628 0.1130	0.0875 0.1568	0.0693	0.0518 0.1242	0.0010	0.0330	0.0097	0.0087	0.0000	0.0002	99.9999	0.952177 0.94207
41-10B 42-10B	3/5/2012	?	?	0.5704	0.0467	93.3702	3.8301	1.1094	0.3903	0.3289	0.1784	0.1130	0.1568	0.1450	0.1242	0.0106	0.0039	0.0174	0.0194	0.0044	0.0007	100.0001	0.94207
44-10	4/23/2012	0.30	-11	0.4577	0.2090	95.0794	3.5282	0.4236	0.3318	0.2001	0.0502	0.0222	0.0462	0.1048	0.0208	0.0000	0.0000	0.00120	0.0008	0.0000	0.0004	100.0000	0.959144
12-11	6/25/2012	0.19	14	0.3545	0.3991	95.1965	3.0569	0.3532	0.1780	0.0498	0.0784	0.0258	0.0875	0.1036	0.0730	0.0160	0.0040	0.0192	0.0005	0.0006	0.0034	100.0000	0.964678
12-11W	6/11/2012	0.18	19	0.4691	0.0575	94.1256	3.3829	0.8745	0.2632	0.2075	0.1173	0.0695	0.1113	0.1372	0.1090	0.0133	0.0133	0.0194	0.0163	0.0009	0.0122	100.0000	0.95404
21-11	6/11/2012	0.17	19	0.4672	0.1165	94.1805	3.7227	0.0000	0.3247	0.2825	0.1680	0.1070	0.1679	0.1887	0.1626	0.0231	0.0081	0.0274	0.0280	0.0023	0.0229	100.0001	0.958164
32-11	10/6/2011	0.22	13	0.5223	0.0097	93.7030	3.8213	0.9190	0.3210	0.2361	0.1410	0.0732	0.0947	0.0793	0.0513	0.0029	0.0000	0.0139	0.0089	0.0025	0.0000	100.0001	0.948866
41-11B	3/2/2012	0.21	?	0.8591	0.1052	92.4548	3.9281	0.7011	0.4578	0.3977	0.2541	0.1654	0.2434	0.1975	0.1412	0.0085	0.0386	0.0230	0.0209	0.0026	0.0009	99.9999	0.946826
	d Gas Samp																						
13-1 BH	6/11/2012	0.33	19	2.8060	0.0000	92.2935	3.9441	0.0000	0.3635	0.2491	0.1345	0.0674	0.0757	0.0390	0.0173	0.0025	0.0000	0.0069	0.0001	0.0004	0.0000	100.0000	0.955873
22-1 BH	6/11/2012	0.15	19	3.0339	0.0000	91.4958	3.8633	0.9749	0.3655	0.0565	0.1382	0.0025	0.0328	0.0161	0.0179	0.0020	0.0001	0.0001	0.0000	0.0005	0.0000	100.0001	0.949195
13-2 BH 13-2B BH	3/5/2012 6/21/2012	1.17	31	3.4581 0.7833	0.0000	90.7353 92.4048	3.8201 4.5145	1.0743 1.2547	0.3865 0.4110	0.2301 0.3039	0.1178	0.0574 0.0788	0.0641 0.0668	0.0285 0.0272	0.0188	0.0010	0.0020	0.0043	0.0013 0.0014	0.0000	0.0005	100.0001	0.945975 0.93758
32-2 BH	6/21/2012	0.72	26	0.7833	0.0000	92.4048	4.3143	1.1004	0.4110	0.3039	0.1383	0.1059	0.1694	0.0272	0.0093	0.0008	0.0002	0.0037	0.0014	0.0001	0.0014	100.0000	0.93758
33-2B BH	3/5/2012	0.00	21	0.7500	0.0000	91.9483	4.5196	1.4354	0.3864	0.3251	0.1814	0.1162	0.1582	0.1029	0.0503	0.0000	0.0056	0.0123	0.0080	0.0000	0.0002	99.9999	0.93496
13-3W BH	4/4/2012	0.19	18	0.5851	0.0000	92.4747	4.1781	1.6185	0.3771	0.3383	0.1425	0.0863	0.0788	0.0592	0.0371	0.0049	0.0007	0.0082	0.0064	0.0004	0.0037	100.0000	0.936966
22-3 BH	6/11/2012	0.07	19	0.7972	0.0000	92.2055	4.3671	1.4490	0.3797	0.3076	0.1496	0.0874	0.0941	0.0685	0.0377	0.0117	0.0125	0.0111	0.0078	0.0042	0.0093	100.0000	0.93689
32-3 BH	4/4/2012	1.51	12	0.6943	0.0000	93.1825	4.3036	1.1017	0.3078	0.2283	0.0891	0.0444	0.0274	0.0106	0.0062	0.0005	0.0005	0.0015	0.0011	0.0005	0.0001	100.0001	0.942566
44-3C BH	4/4/2012	1.24	13	0.7282	0.0000	92.5420	4.4161	1.3389	0.3818	0.3086	0.1263	0.0694	0.0529	0.0222	0.0081	0.0006	0.0001	0.0031	0.0010	0.0000	0.0004	99.9997	0.937846
43-4 BH	4/4/2012	0.81	18	1.0322	0.0000	92.4099	4.3012	1.4523	0.3484	0.2765	0.0858	0.0434	0.0251	0.0129	0.0072	0.0010	0.0002	0.0017	0.0011	0.0008	0.0002	99.9999	0.938331
44-4 BH	4/4/2012	0.48	18	0.7962	0.0000	91.2149	4.5748	1.8933	0.5013	0.4390	0.1898	0.1209	0.1229	0.0870	0.0418	0.0027	0.0003	0.0112	0.0036	0.0001	0.0000	99.9998	0.928463
12-5 BH 43-9 BH	6/11/2011 4/4/2012	0.00 0.17	19 17	99.4568 1.5314	0.0503	0.1119 90.4485	0.0111 4.2953	0.3174 2.0623	0.0074	0.0052 0.4586	0.0081	0.0069 0.1247	0.0132 0.1145	0.0060 0.0731	0.0043	0.0000	0.0002 0.0005	0.0012	0.0000	0.0000	0.0000	100.0000	0.247293 0.92873
13-10 BH	12/23/2011	0.17	-12	1.3915	0.0002	91.9284	3.9110	1.4602	0.6302 0.4180	0.4586	0.2044	0.1247	0.1145	0.0731	0.0352	0.0000	0.0003	0.0103	0.0003	0.0002	0.0028	99.9999	0.92873
31-10 BH	5/14/2012	0.14	-12	0.8255	0.0005	92.0103	4.5227	1.5013	0.3920	0.3318	0.1379	0.0830	0.0826	0.0602	0.0370	0.0000	0.0000	0.0011	0.0020	0.0024	0.0000	100.0002	0.934598
32-10C BH	3/5/2012	0.07	21	1.4023	0.0000	92.2150	4.0826	1.3552	0.3486	0.2593	0.1280	0.0720	0.0711	0.0373	0.0153	0.0018	0.0041	0.0011	0.0018	0.0005	0.0003	99.9999	0.941122
41-10B BH	3/2/2012	1.17	21	0.7897	0.0000	93.3746	4.2654	0.9129	0.2833	0.2509	0.0666	0.0303	0.0150	0.0061	0.0000	0.0000	0.0006	0.0009	0.0034	0.0000	0.0003	100.0000	0.944761
42-10B BH	3/5/2012	0.07	?	1.1921	0.0000	92.0918	4.2286	1.3753	0.3731	0.3002	0.1512	0.0921	0.0950	0.0542	0.0336	0.0000	0.0036	0.0061	0.0029	0.0000	0.0002	100.0000	0.938869
44-10 BH	4/23/2012	0.14	-11	1.3997	0.0000	91.5877	4.2577	1.5803	0.4681	0.3907	0.1383	0.0727	0.0600	0.0342	0.0100	0.0000	0.0000	0.0003	0.0001	0.0000	0.0000	99.9998	0.935627
12-11 BH	6/25/2012	0.33	19	0.7963	0.0000	93.8511	3.7449	0.8768	0.2674	0.1839	0.0988	0.0524	0.0618	0.0406	0.0166	0.0022	0.0002	0.0066	0.0001	0.0002	0.0000	99.9999	0.950785
12-11W BH	6/11/2012	0.76	19	0.9415	0.0000	92.7397	4.2221	1.1349	0.3341	0.2626	0.1281	0.0743	0.0792	0.0511	0.0219	0.0022	0.0002	0.0074	0.0001	0.0003	0.0003	100.0000	0.942155
21-11 BH	6/11/2012	0.83	19	1.2156	0.0000	93.7351	3.8083	0.8327	0.1713	0.1057	0.0367	0.0189	0.0186	0.0236	0.0218	0.0031	0.0003	0.0037	0.0004	0.0004	0.0039	100.0001	0.951619
32-11 BH	10/6/2011	0.07	11	3.1695	0.0000	85.6361	4.8457	2.5594	1.1795	1.1772	0.7327	0.4374	0.1702	0.0403	0.0228	0.0066	0.0033	0.0023	0.0074	0.0010	0.0085	99.9999	0.904711
41-11B BH	3/2/2012	0.97	1	1.0533	0.0000	92.7414	4.3634	0.7554	0.3824	0.2953	0.1407	0.0796	0.0849	0.0514	0.0255	0.0025	0.0125	0.0060	0.0048	0.0000	0.0010	100.0001	0.944076

D.6 Summary of Organic Compounds Detected in Produ ced Water Samples

405 406 407

Table SI D3. Summary of organic compounds detected in produced water by EPA Region 8 and Zymax (contractor to EPA³⁰). PGPPXX are EPA sample identification codes.

	Tribal Pavillion 14-10 (PGPP01) EPA R8	Tribal Pavillion 24-2 (PGPP04P) EPA R8	Tribal Pavillion 24-22 (PGPP04W) Zymax	Tribal Pavillion 33-10 (PGPP05) EPA R8	Tribal Pavillion 33-10 (PGPP05) Zymax	Tribal Pavillion 14-2 (PGPP06) EPA R8	Tribal Pavillion 14-2 (PGPP06) Zymax
Volatile Analysis (mg/L)							
Methylene chloride	0.51 J	<50 U	NA	<0.025 U	NA	<0.025 U	NA
Benzene	8.02 J	860 J	2.053	0.306 J	0.379	3.02 J	1.953
Toluene	97.5 J	16800 J	11.329	0.774 J	1.284	9.07 J	7.288
Ethylbenzene	26.6 J	4410 J	0.632	0.476 J	0.579	0.542 J	0.262
m,p-Xylene	298 J	46000 J	11.513	2.18 J	3.684	4.76 J	4.292
o-Xylene	73.6 J	9430 J	2.64	0.797 J	1.307	1.37 J	1.1
1,2,4-Trimethylbenzene	31.6 J	8730 J	0.695	1.77 J	2.621	0.765 J	0.632
1,3,5-Trimethylbenzene	18.6 J	6250 J	0.465	0.818 J	1.566	0.414 J	0.366
n-Butyl Benzene	1.06 J	162 J	< 0.005	0.218 J	0.179	<0.025 U	< 0.050
sec-Butylbenzene	0.95 J	270 J	0.007	0.243 J	0.655	<0.025 U	0.062
tert-Butylbenzene	0.25 J	86 J	NA	<0.025 U	NA	<0.025 U	NA
n-Propyl Benzene	3.64 J	1290 J	0.13	0.198 J	0.803	0.07 J	0.11
Isopropylbenzene	11.4 J	948 J	0.542	0.202 J	3.427	0.058 J	0.337
p-Isopropyltoluene	1.64 J	334 J	NA	0.222 J	NA	<0.025 U	NA
Naphthalene	3.43 J	<200 U	<0.005 U	2.97 J	< 0.050	0.21 J	< 0.050
Adamantane	0.52 J	74 J	NA	0.305 J	NA	<0.025 U	NA
1,3-Dimethyl adamantane	0.46 J	<50 U	NA	0.488 J	NA	<0.025 U	NA
Semivolatile Analysis (mg/L)							
Phenol	NA	<2.0 U	NA	<2.0 U	NA	6.96 J	NA
2-Methylphenol	NA	<2.0 U	NA	<2.0 U	NA	7.76 J	NA
2,4-Dimethylphenol		<2.0 U	NA	<2.0 U	NA	5.00 J	NA
3 & 4-Methylphenol	NA	<2.0 U	NA	<2.0 U	NA	6.76 J	NA
Naphthalene	NA	30 J	NA	37.8 J	< 0.050	<0.40 U	NA
2-Methylnaphthalene	NA	5.4 J	<0.005 U	110 J	< 0.050	<0.40 U	NA
Adamantane	NA	47.2 J	NA	6.4 J	NA	<1.12 U	NA
1,3-Dimethyl adamantane	NA	9.8 J	NA	8.2 J	NA	<1.12 U	NA
Triethylene glycol	ND	ND	NA	ND	NA	17.8 (TIC) N	À

J – estimated concentration U – below reporting limit

TIC - tentatively identified compound

Figure SI D1. Organic compounds (volatile and semivolatile analyses) detected by EPA³⁰ in produced water at Tribal Pavillion 14-10 (PGPP01), Tribal Pavillion 33-10 (PGPP05) and Tribal Pavillion 14-02 (PGPP06) and product present with water at Tribal Pavillion 24-02 (PGPP04P). Triethylene glycol was a tentatively identified compound (gas chromatography area at least 10% as large as the area of the nearest internal standard and a mass spectrometry match quality greater than 90%).

E – EPA Monitoring Well Construction, Purging, and Sample Results

E.1 Monitoring Well Construction

In June 2010, EPA installed two monitoring wells, MW01 and MW02, using mud rotary drilling. Monitoring well construction schematics for MW01 and MW02 are provided in Figures SI E1 and SI E2, respectively. We modified schematics previously illustrated in EPA's draft report²⁷ to be more consistent with the prime contractor (Shaw Environmental) and subprime contractor (Boart-Longyear) and USGS (during redevelopment) daily logs. We typed and chronologically combined handwritten daily logs (not provided here) to gain a better understanding of activities during monitoring well construction.

Boart-Longyear used a water supply truck to transport municipal water from Riverton, WY to mix bentonite for MW01 and MW02. This truck was not used for any other purpose. Water was not stored in tanks prior to use. Municipal water was sampled by the City of Riverton on 7/26/2010 (the same time as drilling). It is unlikely that water used to mix drilling mud impacted analytical results at MW01 and MW02 for the following reasons. (1) No volatile petroleum hydrocarbons were detected. The reporting limit for benzene, toluene, ethylbenzene, o-xylene, m, p-xylenes, naphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene was 0.50 μg/L. (2) With the exception of chlorine disinfection products, choroform and trihalomethanes, detected at 2.3 and 2.7 μg/L respectively, no other volatile organic compounds were detected. Choroform and trihalomethanes were not detected in aqueous samples from MW01 and MW02 indicating loss of these compounds via volatilization and/or degradation during drilling. (3) No semivolatile organic compounds were detected. (4) No additives (e.g., biocides) were added to the water during transport and use.

Boart-Longyear used a number of additives (Table SI E1) in water-based drilling mud to avoid heaving of shale and a product, Aqua-Clear PFD, to facilitate removal of mud after drilling. MSDSs indicated that: (1) Quik-Gel was comprised of bentonite (60%), crystalline silica quartz (1-5%), crystalline silica cristobalite (0-1%), and crystalline silica tridymite (0-1%); (2) EZ-Mud Gold contained "no hazardous substances"; (3) Quik-Trol Gold was a cellulose derivative with a 60-100% polysaccharide concentration; (4) dense soda ash was 100% sodium carbonate (Na₂CO₃); (5) Penetrol contained 1-5% of diethanolamine and 10-30% coco diethanolamide; and (6) Aqua-Clear contained 30-60% of an anionic polyacrylamide.

Figure SI E1. Well schematic for MW01 modified from EPA²⁷

Figure SI E2. Well schematic for MW02 modified from EPA²⁷

450 Table SI E1. Summary of products used for mud rotary drilling, mass ratios of product use, analyses of aqueous 451 extracts of products, and maximum concentration of detection in MW01 and MW02.

TT 1'1		Gold			Gold		
Haliburton	Haliburton Ha	liburton	Soda Ash OCI		Haliburton		
Tiunouron	Tiunourton in	ino ar ton			Tunounton		
Dispersant – assist		shale/clav	- CHOMING WIS	bentonite	clarifier		
<u> </u>					*********		
	liquid		solid	solid	solid		
				<u> </u>			
1.107	1.23 1,	1.230	1.1211	1.50	1.05		
23.4	117.6	2.36	12.1	0.36	6.34		
1.407	not used	1.1232	not useu	1.50	1.1232		
23.4		12.5		0.36	12.5		
					chinesis		
1 Lower sets of conce	ntiations refer	o with or and r	v1 vv 02, 1 espect	ively			
7.96	Q 51	6.64	11.2	8 3 5	NA		12
							3.812
\ /	\ /	()	` /	\ /		3.203	3.612
` /		` ′		\ /		0.42	19.7
\ /	\ /		` /	` ′		9.43	19.7
						22.2	166
\ /	\ /	` ,	` ′			23.3	466
				ND			
` '	` /					428	81.8
` /							
	` ′		` ′			54.9	44.0
· /		. /					
ND	ND	ND	NA	NA	NA	79.5	1460
ND	ND	ND	NA	NA	NA		
		ND	NA	NA	NA	< 5.0	6120
ND	ND	ND	NA	NA	NA		
85(J) (3.64)	43(J) (0.37)	27(J) (11.4)	NA	NA	NA	212	862
85(J) (3.64)	not used	27(J) (2.16)	NA	NA	NA		
59(J) (2.53)	58(J) (0.49)	ND	NA	NA	NA	<1.00	7.49
59(J) (2.53)	not used	ND	NA	NA	NA		
ND	ND	ND	NA	NA	NA	< 0.50	246
ND	ND	ND	NA	NA	NA		
ND	ND	ND	NA	NA	NA	< 0.50	677
ND	ND	ND		NA			
ND	ND					< 0.50	101
						< 0.50	1063
						0.00	1000
						<1.00	265
	l			1		-1.00	
						<1.00	7.2
	\ /					\1.00	1 7.2
						Z5000 Z	5000
						\ \J000 <	1000
ן אט			NA NA	NA NA	NA NA	60.0	1610
ND	ND	ND					
	7.96 13.3 (0.57) 13.3 (0.57) 140 (70.2) 1640 (70.2) 1640 (70.2) 214 (9.16) 214 (9.16) 121 (5.18) 121 (5.18) 0.40 (0.02) 0.40 (0.02) ND ND ND ND ND S5(J) (3.64) 85(J) (3.64) 59(J) (2.53) 59(J) (2.53) ND ND ND ND ND ND ND ND ND ND ND ND ND	mud removal liquid liquid 1:20 1:20 1:20 1:20 1:2467 1:2347	mud removal stabilizer liquid liquid solid 1:20 1:20 1:100 1:467 1:2347 1:236	mud removal liquid solid solid 1:20 1:20 1:100 1:100 1:100 1:1467 1:2347 1:236 1:1211	Dispersant - assist mud removal Stabilizer Stabiliz	Dispersant - assist mud removal Stabilizer Stabiliz	Dispersant - assist mid removal Stabilizer Stabiliz

456 457

458

459

EPA stored samples of products used for drilling in glass mason jars, transported products with a chain of custody form by vehicle to its Office of Research and Development (ORD) laboratory in Ada, OK, and archived products in a refrigerator at 4°C prior to extraction with water. Analysis for organic compounds were not conducted on water extracts of Quik Gel and Quik-Trol Gold due to the gel nature of extracts and concern of analytical equipment damage. The dissolved organic carbon of soda ash was only

⁴⁵² 453 454 NA - not analyzed

J – estimated (below the level of quantification)

0.58 mg/L and based on MSDS, was not expected to be a source of organic compounds. EPA's analysis of extracts is noteworthy in that we could find no other published studies in which an organization collected and analyzed samples of products used for drilling mud during installation of monitoring wells.

With the exception of soda ash, the pH of extracts were well below that maximum pH levels (~12) observed in MW01 and MW02. Dense Soda Ash was not used at MW02. Alkalinity of soda ash is dominated by carbonate not hydroxide as observed in MW01. The pH of drilling mud in which soda ash was mixed in MW01 varied between 8 and 9 standard units. Thus, additives had no effect on pH measurements at monitoring wells.

To estimate expected concentrations of compounds in additives in water used for drilling mud, we normalized aqueous extraction concentrations by a normalization factor defined by

 $Normalization \ Factor = \frac{mass \ ratio \ in \ water \ used \ for \ drilling \ mud \ or \ well \ development}{mass \ ratio \ in \ aqueous \ extract}$

For instance, the mass ratio of the water extract of Aqua-Clear PFD was 1:20 while use in water used for well development was 1:467 resulting in a normalization factor of 1/20 divided by 1/467 or 23.4. Results are provided in Table SI E1.

At MW02, Boart-Longyear used 21 sacks or 1,050 pounds of Quik-Gel for drilling. The initial mass of bentonite used at MW01 was not provided in the logs. However, it is expected to be similar given that the target depth (almost 305 m or 1,000 feet) was the same at both wells. A log entry on 6/11/10 at 10:20 from MW02 indicates that 17,000 L (4,500 gallons) of water was used to mix mud for drilling at this well. The volume of water used to mix mud at MW01 was not specified in the drilling logs. However, both wells were drilled to the same depth under the same subsurface conditions so the volume of water used at MW01 would be expected to be similar to that used at MW02.

Concentrations of potassium in monitoring wells were well below concentrations and normalized concentrations in extracts. The extract and normalized concentration of chloride in Aqua-Clear PFD was lower and far lower than detected in MW02. During the Phase V sampling event, acrylamide was added to the target list of analytes and was not detected ($<10 \,\mu g/L$)³³ indicating that any compounds associated with Aqua-Clear PFD were removed during well development. With the exception of naphthalene detected at 2.0 $\,\mu g/L$ in a Penetrol extract (normalized concentration of 0.02 $\,\mu g/L$ in MW01), petroleum hydrocarbons were not detected in extracts. The maximum concentrations and normalized concentration of isopropanol in extracts 85 was $11.4 \,\mu g/L$, respectively compared to 212 and $862 \,\mu g/L$ at MW01 and

MW02, respectively. BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) were not detected in extracts but were detected at MW02.

EPA collected composite samples of cuttings and sent them with a chain of custody form to TestAmerica Laboratories in Denver, Colorado for Toxic Characteristic Leaching Procedure (TCLP). Samples were analyzed for TCLP volatile organic compounds using gas chromatography-mass spectrometry (GC-MS) in accordance with EPA SW-846 Methods 1311/8260B, for TCLP semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311/8270C, for TCLP metals in accordance with EPA SW-846 Methods 1311/6010B, and for TCLP mercury in accordance with EPA SW-846 Methods 1311/7470A. Acetone, toluene, and m & p-xylene were detected in one sample at 6.9, 0.63, and 1.0 μg/L, respectively, concentrations far lower than that detected in MW02. Considering all these factors, it is unlikely that additives used for drilling mud impacted sample results in MW01 and MW02.

Boart-Longyear used thread and couple Hyundai HYSCO ASTM A53A-E steel pipe for well casing at both MW01 and MW02. A 6.1 m (20 ft) stainless-steel pre-packed screen was attached to casing via flush threads. EPA specified the use of metal casing to ensure sufficient tensile strength, especially at joints during well placement. The tensile strength of steel and stainless-steel joints is over an order of magnitude greater than polyvinyl chloride (PVC) joints. The WYDEQ (Well Construction Standards, Chapter 11, Part G) explicitly allows for the use of ASTM A53 steel casing for well construction.

Materials used for well casing and screens can impart both negative and positive bias in detection and quantification of target analytes. Steel is an alloy consisting primarily of iron (Fe). The maximum allowable concentrations of manganese (Mn), copper (Cu), nickel (Ni), chromium (Cr), molybdenum (Mo), and vanadium (V) in ASTM A53A-E³⁸, steel pipe are 0.95, 0.40, 0.40, 0.15, and 0.08% by weight, respectively. Houghton and Berger³⁹ noted a slight enrichment of Fe and Mn in water from wells constructed of steel compared to wells constructed from PVC and acrylonitrile-butadiene-styrene (ABS).

Interaction can also occur with stainless steel. Hewitt⁴⁰ conducted static and dynamic (flushing) experiments on PVC, PTFE, stainless steel-SS-304 (SS-304), and stainless steel-316 (SS-316) casing materials in glass cylinders containing well water with low dissolved oxygen (DO) (< 0.5 mg/L) and observed corrosion of both SS-304 and SS-316 during testing (pH 7.6 - 7.8). Low concentrations of Cu, Cr, and Ni leached from both virgin SS-304 and SS-316. However, leaching of Cr and Ni increased significantly with corrosion. Hewitt⁴⁰ observed that concentrations of cadmium (Cd), Fe, and lead (Pb) decreased indicating sorption to casing. Hewitt⁴⁰ stated that reduction of Fe was consistent with

precipitation of Fe(OH)₂ and that iron oxides provided active exchange sites for sorption of these elements.

In an EPA report, Aller et al.⁴¹ state that potentially corrosive conditions exist for steel in ground water having low pH (< 7) and elevated DO (> 2 mg/L), hydrogen sulfide (H_2S) (> 1 mg/L), TDS (> 1000 mg/L), CO₂ (> 50 mg/L), and C1 (> 500 mg/L) and that use of steel is not considered prudent in most natural geochemical environments. Purged water from MW01 and MW02 was largely devoid of dissolved oxygen during Phase III, IV, and V sampling events with a pH level in excess of 11 standard units.

In its Draft RCRA Ground-Water Monitoring Guidance, EPA⁴² states that use of carbon steel, low-carbon steel, and galvanized steel is not recommended for monitoring well construction in most natural geochemical environments and use of Type 304 and Type 316 stainless steel is unsuitable for use when monitoring for inorganic constituents. In an EPA Issue Paper, Pohlmann and Alduino⁴³ state that when corrosion is a concern, use of stainless-steel casing is not appropriate. In another EPA Issue Paper, Llopis⁴⁴ states that if samples are to be analyzed for metals, metal casing of any type should not be used. Thus, when installing monitoring wells to sample both metals and organic compounds, there are no regulatory guidelines on materials for well casing.

During the week of April 30th, 2012 (after cessation of Phase V sampling), a drilling crew from USGS removed the 3 HP submersible pump in MW02, examined the casing and screen with an optical televiewer, and attempted to redevelop the well. The optical televiewer indicated that the screen and casing was intact. During re-development, sediment was removed from the base of the screen. Four subsamples of the material were sent to Gulf Coast Accutest Laboratories for analysis of metals with the following range of results: aluminum (1950-2720 mg/kg), antimony (2.5-3.4 mg/kg), arsenic (3.3-10 mg/kg), cadmium (<0.26-2.1 mg/kg), chromium (79.9-108 mg/kg), copper (168-719 mg/kg), lead (16.2-56.3 mg/kg), nickel (49.4-64.9 mg/kg), selenium (<0.26 mg/kg), and titanium (52.2-80.5 mg/kg). Results of metals analysis indicated that this sediment was either scrapings from steel pipe or a combination of scrapings from steel pipe and corrosion material removed from steel casing during development and redevelopment activities. During the Phase V sampling event, dissolved concentrations of Cd, Pb, Fe, Mn, Cu, Ni, Cr, Mo, and V at MW01 and MW02 were less than reporting limits at 1.0, 1.0, 67, 14.0, 2.0, 1.0, 2.0, 17, and 10 μg/L, respectively. Hence, the use of metal casing and presumed corrosion in areas of swabbing did not impart a positive bias on sample results for metals at MW01 and MW02.

However, corrosion can impact measured pH. Marsh and Lloyd⁴⁵ attributed elevation of pH in steel casing to corrosion and precipitation reactions mediated by carbonic acid and hydrogen sulfide. In both reactions, hydrogen ion is consumed and hydrogen gas is produced. During purging of capped

artesian monitoring wells, Marsh and Lloyd⁴⁵ observed that pH decreased abruptly (e.g., pH 8.8 to pH 7.2) after a short period of time in wells where water flowed through the entire length of casing to the surface. However, there was little variation in pH in monitoring wells having sampling tubes placed within screened intervals. In contrast to observations by Marsh and Lloyd⁴⁵, pH reduction in MW01 during purging was gradual with the trend of pH reduction unrelated to removal of stored casing water. Thus, corrosion was not a causative factor of elevated pH at MW01 and MW02.

 Black steel ASTM A53 pipe has a lacquered outside finish as opposed to a bare or galvanized finish. Manufactures coat the outside of steel pipe with a black paint to prevent rust and corrosion. However, sampled water does not come in contact with the exterior of well casing. Photographs (DiGiulio et al.²⁷) of casing indicate no apparent mill varnish or visual signs of oil and grease prior to or after casing decontamination procedures. Thus, it is unlikely that black varnish on the exterior of metal casing was responsible for detection of organic compounds in MW01 and MW02. Also, a non-hydrocarbon based pipe dope (Jet Lube WellGuard) was used on well casing joints.

During conventional monitoring well construction, a bentonite slurry seal is typically placed on top of a primary or secondary filter or sand pack to limit the downward movement of a cement-based grout (ASTM⁴⁶, EPA⁴²). As documented in the draft⁴⁷ and final⁴⁸ workplans for well installation, this method of well completion was planned for both MW01 and MW02. However, as documented in field logs, during drilling, Shaw and Boart-Longyear advised EPA against the use of a conventional screen and sand pack for well completion at MW01 and MW02 due potential difficulty in sand pack placement (displacement of high density drilling mud with sand) and well development (removal of mud from sand pack). Shaw and Boart-Longyear recommended the use of pre-packed screens and cement baskets (filled with sand at the surface) in lieu of conventional screens and sand packs. EPA concurred with this approach for well completion.

An additional reason for not utilizing a bentonite slurry as a sealing agent is the presence of localized upward hydraulic gradients. Localized artesian conditions are documented in the Wind River Formation²⁶, was present in a domestic well during the Phase II sampling event²⁷, and was observed at 4 production wells during Bradenhead testing conducted by Encana in 2012. Under artesian conditions the bentonite does not have the solids content found in a cement-bentonite grout and will not settle where a strong uplift is present^{49,50}. Under these conditions, pumped bentonite grout never sets up to anything more than thick paste⁵¹. In addition, a bentonite grout backfill would not have been volumetrically stable with overlying cement application since the specific gravity of cement grout was greater than that of the

bentonite slurry. A cement-based grout has the widest regulatory acceptance and is the most commonly used to seal the annular space of deep wells⁴⁶ such as MW01 and MW02.

Cement baskets with blue metal "fins" and a rubber or synthetic liner were threaded to stainless-steel casing containing the stainless-steel pre-packed screens. The joint attaching stainless-steel casing to stainless-steel screen was reinforced with spot welding to increase the structural integrity of the joint. This was necessary to properly position the screen into the borehole prior to descent to target depth. McKay electrodes were used for welding. The MSDS for this product did not indicate the presence of organic compounds.

The composition of the cured (not applied in the field) blue paint on metal springs and rubber liner were not specified by EPA. Organic compounds in cured paint exist in cross-linked polymer matrix and generally considered resistant to leaching⁵². However, little is published on leaching of organic compounds from cured paint. Alben et al.⁵³ studied leaching of organic contaminants from epoxy-coated flat steel panels, with emphasis on the rate of leachate production and leachate composition. Methyl isobutyl ketone (MIBK), o-, m-, and p-xylene represented a major portion (51%) of leachate from the epoxy coating. These findings were supported by field studies indicating the presence of MIBK and xylenes in water from the effluent from 2 of 3 storage tanks that were monitored one month after application of an epoxy coating⁵³. The extent of leaching of organic contaminants from epoxy resin linings was found to be strongly dependent on the duration of the curing process with longer curing periods producing more stable linings.

It is unlikely that blue paint on cement baskets was a causative factor for detection of 2-butoxyethanol and other organic compounds detected in MW01 and MW02 because of the following reasons. (1) MIBK and xylenes were not detected in MW01. (2) There was a low surface area for aqueous exposure (<0.05 m²), a low retention time in the screened interval during sampling especially at MW01 (20 minutes) during phase IV and phase V sampling events, and a large number of number of screen exchanges prior to sampling (especially at MW01 prior to the Phase V sampling event with > 200 exchanges).

High pH levels (~12) were observed during purging and sampling at MW01 and MW02 during Phase III, IV and V sampling events. Daily logs do not indicate that the tremie pipe for cement placement was placed directly through cement baskets or that cement was pumped directly into screened intervals at MW01 and MW02. At MW01, circulation was lost on 7/26/10 while drilling through a sandstone unit from 655 to 725 feet bgs and as shown on an electric log and borehole log descriptions. The caliper log

indicates that a washout occurred at 715 feet bgs. Thus, some cement likely intruded into the formation above the screened interval at 765-785 ft bgs.

At MW01 and MW02, cement was pumped to target depths using a tremie pipe and placed in lifts to avoid buildup of pressure above the basket potentially causing basket collapse. At MW01, sand was added to the sand basket prior to setting the casing and screen in the borehole. The screen was subsequently hung and a cement plug was placed from 228.0-233.2 m (748-765 ft) bgs on 8/5/10 and left to set up overnight. The cement was tagged at 748 feet. Cement placement resumed the following day with 14 yd³ of Portland cement on top of the set plug.

At MW02, more cement, approximately 76-189 L (20 – 50 gallons) was utilized than expected when grouting above the cement basket. Based on a review of daily logs, the most likely explanation for this discrepancy is that the screened interval placement at MW02 was lower than reported by the driller or subcontractor. During the week of April 30th, 2012, a drilling crew from USGS removed the submersible pump in MW02, examined the casing and screen with an optical televiewer, and attempted to redevelop MW02. A member of the crew stated that tagging tape indicated that the base of the screen of MW02 was at 989.5 ft not 980.0 ft bgs as expected. This measurement was checked a second time and the measurement tape was checked for accuracy. If the screen interval was in fact 9.5 ft lower than indicated on the driller's logs, then additional cement would have been necessary to reach the top of the cement basket overlying the screen. Threads on casing collars were visible at all joints located above the water table surface (e.g., pieces of pipe are not threaded flush at their ends). Neither cement nor mud was visible in the joints. An extra one to two inches at each couple would result in the well screen placed 4 - 8 feet deeper than expected or close to 9.5 ft as observed. Given a borehole diameter of 9.9 inches, 30 and 50 gallons of cement is equivalent to approximately 9.5 and 15.9 linear feet of cement which is close to 10.5 linear feet of distance between tagged cement at 958 ft and the top of the screened interval at 968.5 ft bgs.

E.2 Purging at MW02

MW02 is a low flow monitoring well. During the Phase III, IV, and V sampling events, purging at MW02 was repeatedly interrupted by pump cavitation. Low flow may be due to low relative aqueous permeability due to gas flow or insufficient removal of drilling mud during well development. In May 2012, USGS unsuccessfully attempted to redevelop MW02 via swabbing⁵⁴.

During the Phase V sampling event, pre- and post-purge samples were collected at MW02 to assess potential reduction in dissolved gas and VOC concentrations due to gas flow in casing^{55,56}. MW02 was repeatedly purged over a 6 day period (Figure SI E3) to remove one borehole volume (2000 L) of

Figure SI E3. Illustration of purging and sampling sequence (date and times provided) at MW02 for Phase V sampling event. Vertical scale reflects relative lengths of screen, casing, and water levels: (a) Pre-purge condition. Dark gray color denotes water stored in submersible pump casing remaining from the Phase IV sampling event. Mustard colored water denotes water in casing from recovery following the Phase IV sampling event and targeted for removal during the first sample set. Light gray colored water denotes stored casing water from recovery during Phase III and IV sampling events. (b) Water is removed (170L or 45 gal) from the submersible pump casing, replaced with water from above the pump inlet, and sampled. (c) Water above pump inlet is removed (964 L or 255 gal). (d) Recovery occurs (132 L or 35 gallons). Light blue color indicates mixing of water initially present in the screened interval with incoming formation water. (e) Water above pump inlet removed (491 L or 130 gal) from casing. (f) Recovery occurs (167 L or 44 gallons) with further mixing of water in the screened interval. (g) Water above pump inlet removed (215 L or 57 gal). (h) Recovery occurs (189 L or 50 gal) with further mixing of water in the screened interval. (i) Water in submersible pump casing is removed (165 L or 45 gal) and replaced with mixed casing/formation water. (j) Mixed casing/formation water is sampled. Total volume of water removed during the Phase V sampling event prior to collection of the second sample was 2011 L or 532 gal equivalent to 1.04 borehole volumes.

USGS⁵⁸ has a "rule of thumb" recommendation to avoid sampling a well that has not recovered to within 90% of its static water level within a 24-hour period and has had less than one borehole volume of water removed during purging. Based on non-achievement of the former criteria, USGS elected not to physically participate in sampling MW02⁵⁴. Instead, EPA collected samples at MW02 and provided them to USGS for analyses at a commercial laboratory⁵⁹ similar to MW01⁶⁰. Recovery occurs more rapidly in a

low yield well having a low blank casing to screened interval ratio typical of shallow wells. MW02 consisted almost entirely of blank casing. Recovery to 90% of static water level required recovery of 202 m of water level rise in a 24-hour period.

E.3 Purging and Wellbore Model Development at MW01

In the commonly used "well volume' approach to purging, three casing volumes are typically removed prior to sampling⁵⁸. It is assumed that water in blank casing is uniformly removed during purging prior to sampling. However, little or no mixing of water in blank well casing actually occurs above a pump inlet upon stabilization of drawdown^{61,62}. Placement of a submersible pump inlet directly above a screened interval, as was done at both MW01 and MW02 (Figures SI E1 and SI E2), minimizes collection of purge water requiring disposal and takes advantage of flow mechanics to ensure minimal or no contact with blank well casing during sample collection.

EPA⁶³ used a wellbore plug flow model based on flow rate and drawdown to evaluate percent collection of casing and formation water as a function of purge volume and time at MW01. To evaluate removal of dissolved solids in well casing and better evaluate collection of formation water as a function of purge volume, we modified EPA's approach to include mixing in a screened interval. Mixing in a well screen causes a slower transition from casing water to formation water than would occur from plug flow alone.

Prior to commencement of purging, we assume that the concentration of a solute in a screened interval, pre-packed screen, and annular space between the pre-packed screen and borehole wall has an initial vertically integrated initial concentration (C_0) and water in blank casing above the screened interval has an initial vertically integrated initial solute concentration (C_C) (Figure SI E4a). Depending upon variation between C_0 and C_C , differentiation of screen and casing concentrations results in complex hypothetical concentration profiles in the sampling train at the start of purging which dissipate rapidly upon removal of one casing or borehole volume (simulations not illustrated).

Figure SI E4. Plug flow - screen mixing model to support evaluation of purging: (a) Prior to purging, the concentration of a solute in the screened interval (and surrounding borehole) and overlying casing is equal to an initial value C_0 and a constant concentration C_C respectively. (b) During drawdown at commencement of purging, both downward and upward plug flow is assumed in casing above and below a pump inlet, respectively. Radial flow occurs from the surrounding formation with subsequent mixing of formation water and water initially in the borehole and screen. (c) As drawdown stabilizes, all of the water entering the pump inlet is directly from the formation. (d) Water level recovery is allowed to occur to ensure that all water entering the inlet is directly from the formation in the event of slight water level perturbation during pumping.

At the commencement of purging, water is removed from submersible pump casing. Combined downward and upward flow occurs in blank casing above and below the pump inlet respectively (Figure SI E4b) as drawdown occurs in the well. We assume that water in submersible pump and well casing undergoes unmixed plug flow. In the screened interval, radial flow occurs from the surrounding formation and mixes with water initially in the borehole and screen. The mass balance mixing model in the screened interval used is similar to that used by others⁶⁴. This mixed water then undergoes upward flow in the casing to the pump inlet (Figure SI E4b). As drawdown stabilizes, all of the water entering the pump inlet is from the formation (Figure SI E4c). Sampling then occurs after water level recovery (Figure SI E4d) to ensure that all water entering the inlet and flowing to the sampling train is directly from the formation in the event of a slight change in pumping rate due to pump operation. Without allowing for some level of recovery above the pump inlet, a slight and unintentional increase in pumping rate could cause a small but measureable increase in drawdown and again induce some degree of mixing between formation and casing water. This procedure was followed by EPA at MW01 during all sampling events.

Model development is summarized as follows. Casing volume (Vc) [L³] is defined as:

$$V_{C} = \frac{\pi}{4B} \left[L_{WC} D_{ID-WC}^{2} - L_{PC} \left(D_{OD-PC}^{2} - D_{ID-PC}^{2} \right) - L_{TL} \left(D_{OD-TL}^{2} - D_{ID-TL}^{2} \right) - L_{SP} D_{OD-SP}^{2} + L_{PC} D_{ID-PC}^{2} \right]$$

- L_{wc} = length of water column in well (depth to base o f screen depth to static water level) [L]
- L_{PC} = length of submerged pump casing (depth to top o f pump static water level) [L]
- L_{PC^*} = length of submersible pump casing to the surface (static water level) [L]
- L_{TL} = length of submerged tag line (depth of tag line static water level) [L]
- L_{SP} = length of submersible pump [L]
- $D_{\text{ID-WC}}$ = inside diameter of well and screen casing (cm) [L]
- D_{OD-PC} = outside diameter of submersible pump casing [L]
- $D_{\text{ID-PC}}$ = inside diameter of submersible pump casing [L]
- D_{OD-TL} = outside diameter of tag line [L]
- D_{ID-TL} = inside diameter of tag line [L]
- D_{SP} = diameter of submersible pump [L]
- B = Dimensional constant (units of length and volu me are in cm and liters respectively, B = 1000).
- The term $L_{WC} D_{ID-WC}^2$ accounts for water storage in casing, including the screened interval,
- 731 without modification for internal components. The term $L_{PC} \left(D_{OD-PC}^2 D_{ID-PC}^2 \right)$ accounts for the volume of
- submerged submersible pump casing material. The term $L_{SP}D_{OD-SP}^2$ accounts for the volume of the
- submersible pump. The term $L_{PC} * D_{ID-PC}^2$ accounts for water storage in the submersible pump casing
- above the static water level. Valves within submersible pump casing allowed water in casing to extend to
- 135 land surface. Borehole volume $VB[L^3]$ is defined as:

736
$$V_{B} = V_{C} + \frac{\pi}{4B} \left[\phi L_{SS} \left(D_{OD-PP}^{2} - D_{OD-WC}^{2} \right) + L_{SS} \left(D_{BH}^{2} - D_{OD-PP}^{2} \right) \right]$$

- L_{SS} = length of stainless-steel pre-packed screen [L]
- D_{OD-WC} = outside diameter of steel well casing [L]
- D_{OD-PP} = outside diameter of pre-packed screen [L]
- D_{BH} = diameter of borehole [L]
- \square = effective porosity of pre-packed screen (assume d 0.4).
- The term $\phi L_{SS} \left(D_{OD-PP}^2 D_{OD-WC}^2 \right)$ accounts for water storage in the pre-packed screen. The term
- $L_{SS} \left(D_{BH}^2 D_{OD-PP}^2 \right)$ accounts for water storage in the annular space between the pre-packed screen and
- borehole wall. During drawdown, the relative concentration of a solute entering a sampling train at the
- surface can be expressed by:

- C_P = concentration exiting the submersible pump casi ng at the surface at time increment i [ML³]
- $C_F = \text{constant concentration in formation } [ML -3]$
- C_C = constant storage water casing concentration [ML $^{-3}$]

```
750 C_{BP} = concentration entering pump inlet at time increment i [ML<sup>-3</sup>]
```

- 751 $Q_{BP} = \text{flow of water to the pump from beneath the inle}$ t at time increment i [L³T⁻¹]
- 752 Q_{AP} = flow of water to the pump from above the inlet at time increment i [L³T⁻¹]
- 753 $Q_T = Q$ AP $+Q_{BP}$ at time increment i $[L^3T^{-1}]$.

At the start of purging, all water originates from storage in submersible pump casing. Thus, when

$$V_i < V_{PC}, \quad \left(\frac{C_P}{C_F}\right)_i = \left(\frac{C_C}{C_F}\right)_i$$

756 757

- V_i = cumulative volume of water extracted water volu me at time i [L³]
- 758 V_{PC} = volume of water in submersible casing [L 3].

759 760

761

- At the start of purging, the initial concentration of solute below the pump inlet and above the screened interval is equivalent to C_C but transitions to water from the screened interval over time. Thus,
- 762 when

$$V_{i(BP)} < V_{SP}, \quad \left(\frac{C_{BP}}{C_F}\right)_i = \left(\frac{C_C}{C_F}\right)_i$$

763

764 and

$$V_{i(BP)} > V_{SP}, \quad \left(\frac{C_{BP}}{C_F}\right)_i = \left(\frac{C_S}{C_F}\right)_i$$

765

- 766 $V_{i(BP)} = \Delta V_{i(BP)} + \Delta V_{i-1(BP)}$.
- V_{SP} = volume of water initially stored between the pu mp inlet and screened interval
- $V_{i(BP)}$ = cumulative volume of water removed from below t he pump inlet at time increment i
- 769 C_s = concentration exiting the screened interval at time increment i [ML⁻³].

770

- 771 The cumulative volume of water extracted below the pump at time increment i is calculated by adding the
- cumulative volume of water extracted below the pump at time increment i-1 to the change in extracted
- volume below the pump which is calculated by

$$\Delta V_{i(BP)} = \Delta V_i \left(\frac{Q_{BP}}{Q_T} \right)$$

774 775

- and
- 776 $\Delta V_i = V_i V_{i-1}$.
- 777 The fraction of water originating below the pump to total water extracted is calculated by:

$$\frac{Q_{BP}}{Q_T}\Big|_i = 1 - \left(\frac{Q_{AP}}{Q_T}\right)_i$$

779

and

$$\left(\frac{Q_{AP}}{Q_T}\right)_i = \frac{\Delta D_i}{\Delta D_i^*}$$

$$781 \qquad \Delta D_i = D_i - D_{i-1}$$

$$\Delta D_i^* = \frac{\Delta V_i}{A_C}$$

783
$$A_C = \frac{\pi L_{CD}}{4B} \left(D_{ID-WC}^2 - D_{OD-PC}^2 - D_{OD-TL}^2 \right)$$

- 784 $D_i = total drawdown at time i [L]$
- 785 $\Box D_{i}^{*}$ = the change in drawdown at time i if all water during drawdown comes from above the pump.
- 786 A_C = volume per length of casing associated with dra wdown [L²] (7.12 liters/m drawdown at MW01)
- 787 L_{CD} = characteristic drawdown length [L] (1 m at MW01).

789 During recovery,

$$\Delta D_{i} < 0 \quad and \quad \Box \underline{Q_{AP}} \Box = 0$$

- 791 The concentration of solute in water exiting the screened interval then is calculated using a mass balance
- 792 mixing equation:

$$V_S \frac{dC_S}{dt} = C_F Q_{BP} - C_S Q_{BP}$$

- Since Q_{BP} is a function of time (calculated in increments using drawdown and flow data), C_S/C_F varies in
- 795 increments of time

$$\begin{array}{c|c} & C_S \\ \hline C_S \\ \hline C_F \\ \hline \end{array} = 1 - \begin{bmatrix} 1 \\ 1 \\ \hline C_F \\ \hline \end{array} = \begin{bmatrix} C_S \\ \hline C_F \\ \hline C_{-1} \\ \hline \end{array} = \exp(-\Delta\alpha_i)$$

- 796
- 797 where

798
$$\Delta \alpha_i = \alpha_i - \alpha_{i-1}$$

$$\alpha_i = \frac{V_{BP(i)}}{V_S}$$

799

- 800 \square = cumulative screen volume exchanges at time incr ement i.
- 801 V_s = screen volume (casing + porosity of pre-packed screen + annular space between pre-packed
- screen and borehole wall).

803

At time 0, C_S equals initial concentration (C_0). V_S is a constant calculated by:

$$V_S = V_B - V_C + \frac{\pi}{4B} L_{SS} D_{ID-WC}^2$$

806 Input parameters to support modeling are summarized in Table SI E1.

Table SI E2. Well design and input parameters for calculation of casing, borehole, and screen exchange volumes during Phase V sampling event

Label	MW01		MW02	
	m	liters	m	liters
Depth below ground surface to static head	62.2		60.5	
Depth below ground surface to base of screen	239.3		298.7	
Length of submersible pump (L _{SP})	0.635		0.635	
Depth of base of submersible pump	232.7		297.2	
Depth of top of submersible pump casing	232.1		296.6	
Depth of schedule 80 PVC tag line	232.1		296.6	
Length of water column in well (Lwc)	177.1		238.2	
Length of water in submerged pump casing (LPC)	232.1		296.6	
Length of submerged tag line (L _{TL})	169.9		236.0	
Length of stainless-steel pre-packed screen (Lss)	6.10		6.10	
Inside diameter of schedule 40 steel well casing (IDwc)	0.102		0.102	
Outside diameter of schedule-40 steel well casing (ODwc) () 114		0.114	
Outside diameter of submersible pump casing (OD _{PC})	0.034		0.034	
Inside diameter of submersible pump casing (ID _{PC})	0.027		0.027	
Outside diameter of schedule 80 PVC tag line (OD _{TL})	0.033		0.033	
Inside diameter of schedule 80 PVC tag line (ID _{TL})	0.024		0.024	
Outside diameter of submersible pump (ODsp)	0.089		0.089	
Diameter of borehole (DBH)	0.251		0.251	
Outside diameter of pre-packed screen (ODPP)	0.216		0.216	
Effective porosity of pre-packed screen $(\varphi) = 0.45$				
Length from Bottom of Pump to top of Screen (LPS)	0.457		0.0	
Well casing volume (V _C)		1358		1792
Borehole volume (V_B)		1504		1942
Screen plus borehole volume (Vs)		200.6		196.8
Volume above screen and below pump (V _{SP})		3.76		0.0
Liters per meter of drawdown (Ac)		6.45		6.45
Volume of water in submersible pump casing (V _{PC})		129		165

Table SI E3a. Summary of Organic Compound Detections in MW01

Target Organic Compounds	EPA	EPA	USGS	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	USGS	EPA
	Phase III	Phase IV	Phase V	Phase V	Phase V	Phase V	Phase V	Phase V	Phase V	Phase V	Phase V	Phase V	Phase V	Phase V
	1			0412-4	0412	0412-2	0412-3	0412-5	0412-7	0412-6	0412-8	0412-9		0412-10
Borehole Volumes	0.3	0.7	1.6 - 3.0	1.6	1.8	2.1	2.3	2.4	2.6	2.7	2.9	3.0	3.0	3.3
dissolved organic carbon (mg/L)	8.510	9.430	NA	NA	5.63°/5.75°	NA	NA	NA	NA	NA	NA	NA	NA	3.360
diesel range organics (µg/L)	634 ^{R8}	924 ^{R8}	180(J) ^T /190(J) ^T	555 ^{R8}	484 ^{R8} /476 ^{R8}	NA NA	NA	NA	379 ^{R8}	NA NA	NA	NA NA	85(J) ^T /83(J) ^T	267 ^{R8}
gasoline range organics (µg/L)	389 ^{R8}	592 ^{R8}	700(J+) ^T /760(J+) ^T	584 ^{R8}	528 ^{R8} /539 ^{R8}	531 ^{R8}	493 ^{R8}	461 ^{R8}	418 ^{R8}	444 ^{R8}	402 ^{R8}	410 ^{R8}	730(J+) ^T /710(J+) ^T	328 ^{R8}
benzene (μg/L)	<2.5 ^{R8}	<0.50 ^S	<0.16 ^T /<0.16 ^T	<0.50 ^S	<0.50 ^{\$}	<0.50 ^S	<0.50 ^{\$}	<0.50 ^S	<0.50 ^{\$}	<0.50°s	<0.50 ^S	<0.50 ^S	<0.16 ^T /<0.16 ^T	<0.50 ⁸
benzene (μg/L)	12.3	<0.25(J-) ^{R8}	VO.10 / VO.10	10.50	<0.25 ^{R8} /<0.25 ^{R8}	V0.50	NO.50	VO.50	VO.50	V0.50	₹0.50	₹0.50	V0.10 / V0.10	<0.25 ^{R8}
toluene (μg/L)	0.75 ^{R8}	0.59(B) [§]	<0.17 ^T /<0.17 ^T	<0.50 ⁸	<0.50°/<0.50°	<0.50 ^s	<0.50 ⁸	<0.50 ^s	<0.50 ⁸	<0.50s	<0.50 ^s	<0.50 ^s	<0.17 ^T /<0.17 ^T	<0.50 ^S
4-6-)		<0.56(J-) ^{R8}			<0.25 ^{R8} /<0.25 ^{R8}									<0.25 ^{R8}
m+p-xylene (μg/L)	<2.5 ^{R8}	0.49(J) ^S	<0.34 ^T /<0.34 ^T	<0.50 ^S	<0.50 ^s /<0.50 ^s	<0.50 ^s	<0.50 ^s	<0.50 ^s	<0.50 ^s	<0.50°s	<0.50°s	<0.50°s	<0.34 ^T /<0.34 ^T	<0.50 ^S
. ,,		0.89(B,J-)R8			<1.00 ^{R8} /<1.00 ^{R8}									<1.00 ^{R8}
o-xylene (μg/L)	<2.5 ^{R8}	0.38(J) [§]	<0.19 ^T /<0.19 ^T	<0.50 ^S	<0.50 ⁸ /0.06(J) ⁸	<0.50 ^S	<0.50 ^s	<0.50 ^S	<0.50 ^S	<0.50 ^{\$}	<0.50 ⁸	<0.50 ⁸	<0.19 ^T /<0.19 ^T	<0.50°s
		<0.25(J-)R8			<0.25 ^{R8} /<0.25 ^{R8}									<0.25 ^{R8}
ethylbenzene (μg/L)	<2.5 ^{R8}	0.21(J) ^S	<0.16 ^T /<0.16 ^T	<0.50 ^S	<0.50 ^S /<0.50 ^S	<0.50 ^S	<0.50 ^S	<0.50 ^S	<0.50 ^S	<0.50 ^s	<0.50 ^s	<0.50 ^s	<0.16 ^T /<0.16 ^T	<0.50°
		<0.25(J-) ^{R8}			<0.25 ^{R8} /<0.25 ^{R8}									<0.25 ^{R8}
isopropylbenzene (μg/L)	<2.5 ^{R8}	<0.25(J-) ^{R8}	<0.19 ^T /<0.19 ^T	NA	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	NA	NA	NA	NA	<0.19 ^T /<0.19 ^T	<0.25 ^{R8}
n-butylbenzene (μg/L)	<2.5 ^{R8}	<0.25(J-) ^{R8}	<0.32 ^T /<0.32 ^T	NA	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	NA	NA	NA	NA	<0.32 T/<0.32 T	<0.25 ^{R8}
sec-butylbenzene (µg/L)	<2.5 ^{R8}	<0.25(J-) ^{R8}	<0.17 ^T /<0.17 ^T	NA	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	NA	NA	NA	NA	<0.17 ^T /<0.17 ^T	<0.25 ^{R8}
tert-butylbenzene (μg/L)	<2.5 ^{R8}	<0.25(J-) ^{R8}	<0.16 ^T /<0.16 ^T	NA	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	NA	NA	NA	NA	<0.16 ^T /<0.16 ^T	<0.25 ^{R8}
n-propylbenzene (μg/L)	<2.5 ^{R8}	<0.25(J-) ^{R8}	<0.16 ^T /<0.16 ^T	NA	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	NA	NA	NA	NA	<0.16 ^T /<0.16 ^T	<0.25 ^{R8}
p-isopropyltoluene (μg/L)	<2.5 ^{R8}	<0.25(J-) ^{R8}	<0.20 ^T /<0.20 ^T	NA	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	NA	NA	NA	NA	<0.20 ^T /<0.20 ^T	<0.25 ^{R8}
styrene (µg/L)	<2.5 ^{R8}	<0.25(J-) ^{R8}	<0.17 ^T /<0.17 ^T	NA	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	NA	NA	NA	NA	<0.17 ^T /<0.17 ^T	<0.25 ^{R8}
1,3,5-trimethylbenzene (µg/L)	<2.5 ^{R8}	0.38(J) ⁸	NA	<1.008	<1.00 ⁸ /0.15(J) ⁸	<1.00 ^S	<1.00 ^S	<1.00 ^S	<1.00 ^S	<1.00 ⁸	<1.00°	<1.00°	NA	<1.00\$
		<0.25(J-) ^{R8}			<0.25 ^{R8} /<0.25 ^{R8}									<0.25 ^{R8}
1,2,4-trimethylbenzene (μg/L)	<2.5 ^{R8}	0.49(J) ^{\$}	<0.15 ^T /<0.15 ^T	<1.00 ^S	<1.00 ^S /0.27(J) ^S	<1.00 ^S	<1.00 ^S	<1.00 ^S	<1.00 ^S	<1.00 ^{\$}	<1.00 ^{\$}	<1.00 ^{\$}	<0.15 ^T /<0.15 ^T	<1.00 [§]
	1	<0.25(J-) ^{R8}			<0.25 ^{R8} /<0.25 ^{R8}									<0.25 ^{R8}
1,2,3-trimethylbenzene (µg/L)	NA	0.33(J) [§]	<0.27 ^T /<0.27 ^T	<1.00 ^S	<1.00 ⁸ /0.26(J) ⁸	<1.00 ^S	<1.00 ^S	<1.00 ^S	<1.00 ^S	<1.008	<1.008	<1.008	<0.27 ^T /<0.27 ^T	<1.00 ^S
naphthalene (µg/L)	<2.5 ^{R8}	<1.08	<0.22 ^T /<0.22 ^T	<1.00 ^S	<1.00 ⁸ /3.78 ⁸	<1.00 ^S	<1.008	<1.00 ^S	<1.00 ^S	<1.00 ⁸	<1.00 ⁸	<1.00 ⁸	<0.22 ^T /<0.22 ^T	<1.00°
1 11 11 (7)	0.1028	<0.25(J-) ^{R8}	a anacem Tea arem T	<1.00 ^{R8}	<0.25 ^{R8} /<0.25 ^{R8}	371	371	371	<1.00 ^{R8}	371	37.1	37.1	0.0057T(0.0050T	<0.25 ^{R8}
1-methylnapthalene (µg/L)	<0.10 ^{R8} <0.10 ^{R8}	<0.50 ^{R8}	0.0096(J) ^T /0.01(J) ^T	<1.00 ^{R8}	<1.00 ^{R8} /<1.00 ^{R8} <1.00 ^{R8} /<1.00 ^{R8}	NA	NA	NA	<1.00 ^{R8}	NA	NA	NA	<0.0057 ^T /<0.0058 ^T	<1.00 ^{R8} <1.00 ^{R8}
2-methylnapthalene (μg/L)	<0.10 ^{R8}	<0.50 ^{R8}	$0.0110(J)^{T}/0.011(J)^{T}$	<1.00 ^{R8}	2100	NA	NA	NA	<1.00 ^{R8}	NA	NA	NA	0.0072(J) ^T /0.006(J) ^T	
phenol (µg/L)		19.0 ^{R8}	10(J) ^T /11 ^T	9.65 ^{R8}	8.09(J+) ^{R8} /8.42 ^{R8}	NA	NA	NA	6.68 ^{R8}	NA	NA	NA	6.1(J) ^T /6.6(J) ^T	5.42 ^{R8}
2-methylphenol (µg/L)	<0.10 ^{R8}	<0.50 ^{R8}	<1 ^T /<1.1 ^T	<2.00 ^{R8} <5.00 ^{R8}	<2.00 ^{R8} /<2.00 ^{R8}	NA	NA	NA	<2.00 ^{R8}	NA	NA	NA	<0.99 T/<1.0T	<2.00 ^{R8}
3&4-methylphenol (µg/L)	0.34 ^{R8} <0.10 ^{R8}	1.85 ^{R8} <0.50 ^{R8}	$0.95(J)^{T}/1.1(J)^{T}$	<2.00 ^{R8}	<5.00 ^{R8} /<5.00 ^{R8}	NA	NA	NA	<5.00 ^{R8} <2.00 ^{R8}	NA	NA	NA NA	0.47(J) ^T /0.46(J) ^T	<5.00 ^{R8} <2.00 ^{R8}
2,4-dimethylphenol (µg/L)			<0.61(J-) ^T /<0.62(J-) ^T		<2.00 ^{R8} /<2.00 ^{R8} 69.8(J) ⁸ /69.2(J) ⁸	NA 74.0(DS	NA 76.0(DS	NA na a/n§		NA 77.4(J) ⁸	NA NA	NA CR-5(DS	<0.59(J-) ^T /<0.59(J-) ^T	69.3(J) ⁸
isopropanol (µg/L)	NA NA	212 ⁸ <100 ⁸	<13(J-) ^T /<13(J-) ^T	65.0(J) ⁸	1.7(J†) ^{\$} /<100 ^{\$}	74.8(J) ^S <100 ^S	76.8(J) ^S	82.2(J) ^S	62.6(J) ^S	<100 ^S	80.0(J) ⁸ <100 ⁸	68.5(J) ⁸ <100 ⁸	<13(J-) ^T /<13(J-) ^T	<100
n-propanol (µg/L)	NA NA	NA	NA NA	<100 ⁸ NA	<5000 ^A /<5000 ^A	NA	<100 ⁸ NA	<100 ⁸ NA	<100 ⁸ NA	NA	NA	NA	NA NA	<5000 ^A
methanol (μg/L)	INA	INA	INA	INA	863(J†) ^{\$} /831(J†) ^{\$}	INA	INA	INA	INA	INA	INA	INA	INA	C3000**
ethanol (μg/L)	NA	NA	NA	NA	13.7 (J†) ^{\$} /<100 ^{\$}	<100s	<100°s	<100 ^S	<100°s	<100°s	<100°s	<100°s	NA	<100s
tert butyl alcohol (µg/L)	NA NA	<5.0 ^{\$}	<11 ^T /<11 ^T	<5.0°	<5.0 ^S	<5.0°	<5.0°	<5.0°	<5.0°	<5.0°	<5.0°	<5.0°	<11 ^T /<11 ^T	<5.0°
acetone (μg/L)	NA NA	79.5(J-) ^{R8}	<1.9 ^T /<1.9 ^T	<5.0 ^{\$}	<5.0 ⁸	<5.0°	<5.0 ⁸	<5.0 ⁸	<5.0°	<5.0°	<5.0°s	<5.0°s	<1.9 ^T /<1.9 ^T	<5.0°
ucetone (μg/L)	1421	15.5(8-)	1.3 / 1.5	3.0	<5.0(C) ^{R8} /<5.0(C) ^{R8}	13.0	<5.0	<5.0	13.0	13.0	15.0	15.0	1.5 / 1.3	<5(C)R8
2-butanone (μg/L)	NA	<0.50(J-) ^{R8}	<2 ^T /<2 ^T	NA	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	NA	NA	NA	NA	<2 ^T /<2 ^T	<0.25 ^{R8}
4-methyl-2-pentanone (μg/L)	NA	2.6(J-) ^{R8}	<0.98 ^T /<0.98 ^T	NA	1.39(J)/1.37(J)	NA	NA	NA	NA	NA	NA	NA	<0.98 ^T /<0.98 ^T	0.59 (J)
benzoic acid (µg/L)	212 ^{R8}	457(J) ^{R8}	340(J+) ^T /360(J+) ^T	735(J.D) ^{R8}	221(D) ^{R8} /309(D) ^{R8}	NA	NA	NA	310(D) ^{R8}	NA	NA	NA	190(J+) ^T /200(J+) ^T	237(D) ^{R8}
ethylene glycol (µg/L)	NA	NA	<8630 ^T /<8630 ^T	NA	<5000 ^A /<5000 ^A	NA	NA	NA	NA	NA	NA	NA	<8630 ^T /<8630 ^T	<5000 ^A
propylene glycol (µg/L)	NA	NA	<18700 ^T /<18700 ^T	NA	<5000 ^A /<5000 ^A	NA	NA	NA	NA	NA	NA	NA	<18700 ^T /<18700 ^T	<5000 ^A
diethylene glycol (µg/L)	NA	226(J+)R3	<7730 ^T /<7730 ^T	60.0(J)R3	53.9(J) ^{R3} /53.9(J) ^{R3}	NA	NA	NA	34.1(J) ^{R3}	NA	NA	NA	<7730 ^T /<7730 ^T	26.4(J)R3
triethylene glycol (µg/L)	NA	46(J-) ^{R3}	<8450 ^T /<8450 ^T	12.7(J-) ^{R3}	11.5(J-) ^{R3} /11.6(J-) ^{R3}	NA	NA	NA	4.9(J-) ^{R3}	NA	NA	NA	<8450 ^T /<8450 ^T	2.9 (J-) ^{R3}
tetraethylene glycol (µg/L)	NA	7.3 (J-,B) ^{R3}	NA	<10.0(J-) ^{R3}	<10.0(J-) ^{R3} /<10.0(J-) ^{R3}	NA	NA	NA	<10.0 (J)R3	NA	NA	NA	NA	<10.0 (J-) ^{R3}
2-butoxyethanol (μg/L)	<0.25 ^{R8}	<10(J-)R3	NA	5.1(J-) ^{R3}	3.5(J-) ^{R3} /3.0(J-) ^{R3}	NA	NA	NA	1.5 (J-) ^{R3}	NA	NA	NA	NA	<5.0(J-)R3
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		12.7 ^{R8}		<1.00 ^{R8}	<1.00 ^{R8} /5.78 ^{R8}	1			3.49 ^{R8}					<1.00 ^{R8}
ethyl ether (µg/L)	<0.25 ^{R8}	<0.25(J-) ^{R8}	<0.26 ^T /<0.26 ^T	NA	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	NA	NA	NA	NA	<0.26 ^T /<0.26 ^T	<0.25 ^{R8}
nonylphenol (μg/l)	NA	NA	NA	0.65(J-,B) ^L	0.60(J-,B) ^L /0.57(J-,B) ^L	NA	NA	NA	0.65(J,B) ^L	NA	NA	NA	NA	0.24(J-,B) ^L
octylphenol (μg/L)	NA	NA	NA	0.16(J) ^L	$0.14(J)^{L}/0.13(J)^{L}$	NA	NA	NA	0.10 (J) ^L	NA	NA	NA	NA	0.051(J) ^L
acrylamide (µg/L)	NA	NA	NA	<0.20 ^L	<0.20 ^L /<0.20 ^L	NA	NA	NA	<0.20 ^L	NA	NA	NA	NA	<0.20 ^L
lactate (µg/L)	NA	69(J) [§]	NA	NA	<100(R) ^{\$} /<100(R) ^{\$}	NA	NA	NA	NA	NA	NA	NA	NA	<100(R) ^S
formate (µg/L)	NA	112 ⁸	NA	NA	<100(R) ⁸ /<100(R) ⁸	NA	NA	NA	NA	NA	NA	NA	NA	<100(R) ^S
acetate (µg/L)	NA	8050 ^s	NA	NA	3420(D) ^S /5960(D) ^S	NA	NA	NA	NA	NA	NA	NA	NA	6080 ^s
propionate (µg/L)	NA	309 ⁸	NA	NA	75(J) ⁸ /95(J) ⁸	NA	NA	NA	NA	NA	NA	NA	NA	0.084(J) s
adamantine (µg/L)	<2.5 ^{R8}	<0.25(J-) ^{R8}	NA	<1.00 ^{R8}	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	<1.00 ^{R8}	NA	NA	NA	NA	<0.25 ^{R8}
1,3-dimethyl adamantine (µg/L)	<2.5 ^{R8}	<0.25(J-) ^{R8}	NA	<1.00 ^{R8}	<0.25 ^{R8} /<0.25 ^{R8}	NA	NA	NA	<1.00 ^{R8}	NA	NA	NA	NA	<0.25 ^{R8}

1 1V 0.7 91 11. 655 23: 7 0.0 4 -11 6 7.9 0 38! 50(B)° <0 10 4.2 8° 33!	1.6-3.0		Phase V 0412 1.8 11.34/11.34 1489/1489 0.00/0.00 -388/-388 2.0 213/213 0.120°/<0.050° 1.81°/1.60°	Phase V 0412-2 2.1 11.20 1413 0.00 -393 NA NA	Phase V 0412-3 2.3 11.16 1393 0.00 -394 NA NA	Phase V 0412-5 2.4 11.08 1371 0.01 -391 NA NA	Phase V 0412-7 2.6 11.01 1354 0.01 -397 NA	Phase V 0412-6 2.7 10.94 1336 0.00 -395 NA	Phase V 0412-8 2.9 10.89 1335 0.01 -385 NA	Phase V 0412-9 3.0 10.80 1318 0.00 -383 NA	10.7 1373 <0.20 -389.8 NM	Phase V 0412-10 3.3 10.71 1307 0.01 -379
.91 1195 23: .7 0.0 .4 -11 .5 7.9 .0 386 .50(B)° <0 .50(B)° <0 .8 ° 33: .8 (J) 14 .3 ° 234 <355° 1.8	79 11.4 52 1621 3 < 0.20 6 -343.7 NM 8 215 100° <0.019 ^T <0.0 5° 0.79(B) ^T /0.79 9° 380 ^T /380 ^T 10) NA 10° 26 ^T /26 ^T	11.43 1539 0.01 -395 NA NA NA 19 ^T NA 0(B) ^T NA	11.34/11.34 1489/1489 0.00/0.00 -388/-388 2.0 213/213 0.120°/<0.050° 1.81°/1.60°	11.20 1413 0.00 -393 NA NA	11.16 1393 0.00 -394 NA	11.08 1371 0.01 -391 NA	11.01 1354 0.01 -397 NA	10.94 1336 0.00 -395 NA	10.89 1335 0.01 -385	10.80 1318 0.00 -383	10.7 1373 <0.20 -389.8	10.71 1307 0.01
.91 11655 23: .7 0.0 .4 -11 .7.9 .0 38i .50(B)° <0 .50(B)° <0 .88° 33: .88(J) 14 .3° 234 <34 <355° 1.8	52 1621 3 <0.20 6 -343.7 NM 8 215 100° <0.019 ^T /<0.0 5° 0.79(B) ³ /0.75 0.79(38) ³ /0.75 1(f) NA 1° 26 ^T /26 ^T	1539 0.01 -395 NA NA NA 109 ^T NA 20(B) ^T NA 3910	1489/1489 0.00/0.00 -388/-388 2.0 213/213 0.120°/<0.050° 1.81°/1.60°	1413 0.00 -393 NA NA	1393 0.00 -394 NA	1371 0.01 -391 NA	1354 0.01 -397 NA	1336 0.00 -395 NA	10.89 1335 0.01 -385	1318 0.00 -383	1373 <0.20 -389.8	1307 0.01
655 23: 7 0.0 4 -11 6 7.9 0 38i 50(B)° <0 610° 4.2 8° 33i 8(J) 14 33° 23. Λ <3. 15° 1.8	52 1621 3 <0.20 6 -343.7 NM 8 215 100° <0.019 ^T /<0.0 5° 0.79(B) ³ /0.75 0.79(38) ³ /0.75 1(f) NA 1° 26 ^T /26 ^T	1539 0.01 -395 NA NA NA 109 ^T NA 20(B) ^T NA 3910	1489/1489 0.00/0.00 -388/-388 2.0 213/213 0.120°/<0.050° 1.81°/1.60°	1413 0.00 -393 NA NA	1393 0.00 -394 NA	1371 0.01 -391 NA	1354 0.01 -397 NA	1336 0.00 -395 NA	1335 0.01 -385	1318 0.00 -383	1373 <0.20 -389.8	1307 0.01
7 0.0 4 -11 5 7.9 0 388 50(B)° <0 51° 4.2 8° 339 8(J) 14 .3 A <3 55° 1.8	3	0.01 -395 NA NA NA (B) [†] NA 391°	0.00/0.00 -388/-388 2.0 213/213 0.120°/<0.050° 1.81°/1.60°	0.00 -393 NA NA	0.00 -394 NA	0.01 -391 NA	0.01 -397 NA	0.00 -395 NA	0.01 -385	0.00 -383	<0.20 -389.8	0.01
4 -11 7.9 0 388 50(B)° <0 18° 4.2 8° 339 8(J) 14 33° 23 A <3. 55° 1.8	6 -343.7 NM 8 215 1000 <0.019 ^T /<0.0 5° 0.79(B) ^T /0.7380 ^T 10) NA 10° 26 ^T /26 ^T	-395 NA NA NA (19 [†] NA (9(B) [†] NA 3910	-388/-388 2.0 213/213 0.120°/<0.050° 1.81°/1.60°	-393 NA NA	-394 NA	-391 NA	-397 NA	-395 NA	-385	-383	-389.8	
7.9 0 388 50(B)° <0 610° 4.2 88° 338 88° 339 8(J) 141 33° 233 A <3. 55° 1.8	NM 215	NA NA NA NA NA NA NA NA NA NA NA NA NA N	2.0 213/213 0.120°/<0.050° 1.81°/1.60°	NA NA	NA	NA	NA	NA				-379
0 388 50(B)° <0 61° 4.2 8° 339 8(J) 14 3° 23. A <3. 15° 1.8	8 215 .100° <0.019 ^T /<0.0 .5° 0.79(B) ^T /0.79 9° 380 ^F /380 ^F 1(J) NA .1° 26 ^T /26 ^T	NA 19 ^T NA 0(B) ^T NA 391°	213/213 0.120°/<0.050° 1.81°/1.60°	NA					NA	NT A	N/M	
50(B)° <0 51° 4.2 8° 339 8(J) 14' 3° 23. A <3.	.100° <0.019 ^T /<0.0 5° 0.79(B) ^T /0.79 9° 380 ^T /380 ^T 1(J) NA 1° 26 ^T /26 ^T	119 ^T NA 0(B) ^T NA 391 ^O	0.120°/<0.050° 1.81°/1.60°	•	NA	NA	37.			INA	INIVI	2.6
4.2 80 339 80 141 30 23. A <3.	5° 0.79(B) ¹ /0.79 9° 380 [†] /380 [†] 1(J) NA 1° 26 [†] /26 [†]	9(B) ^T NA 391 ^o	1.81 ⁰ /1.60 ⁰	1			NA	NA	NA	NA	174/182	181
4.2 80 339 80 141 30 23. A <3.	5° 0.79(B) ¹ /0.79 9° 380 [†] /380 [†] 1(J) NA 1° 26 [†] /26 [†]	9(B) ^T NA 391 ^o	1.81 ⁰ /1.60 ⁰	2.2.4		•		•	•	•	•	
8° 339 8(J) 143 3° 23. A <3. (5° 1.8	9° 380 ^T /380 ^T 1(J) NA 1° 26 ^T /26 ^T	391°		NA	NA	NA	NA	NA	NA	NA	<0.02 T	< 0.050°
8(J) 14: 3° 23. A <3. (5° 1.8	1(J) NA 1° 26 ^T /26 ^T			NA	NA	NA	NA	NA	NA	NA	0.34(B) ^T	0.490°
3° 23. A <3. i5° 1.8	.1° 26 ^T /26 ^T	187(DS	390°/388°	397º	394°	406°	407º	401°	411°	413°	410 ^T	428°
\ <3. i5 ^o 1.8		10/(0)	177(J) ^S /171(J) ^S	202(J) ^S	198(J) ⁸	210(J) ^S	210(J) ⁸	208(J) ^S	210(J) ⁸	214(J) ^S	NA	200(J) ^S
\ <3. i5 ^o 1.8	0.00 0.27 DT /0.27 D	21.0°	19.4°/20.9°	22.0°	21.0°	21.2°	21.0°	21.5°	21.6°	20.8°	27 ^T	21.2°
	$0.2(J)^T/0.2(J)$	T <1.00°	<1.00°/<1.00°	<1.00°	<1.00°	<1.00°	<1.00°	<1.00°	<1.00°	<1.00°	0.2(J) ^T	<1.00°
.9 [§] 24.	8º 3T/3T	2.24°	2.290/2.330	2.37°	2.11°	2.29°	2.01°	2.33°	2.13°	2.06°	3 ^T	2.01°
	.7 ^S 15.0 ^T /16.0 ^T	17.8 ^{\$}	17.3 ^{\$} /17.2 ^{\$}	16.2 ⁸	16.0 ^s	15.7 ^s	15.3 ^s	15.0 ^S	14.5 ^S	14.4 ^S	13.0 ^T	13.6 [§]
4 ⁸ 30		273 ^{\$}	276 ^{\$} /277 ^{\$}	271 ^s	264 ⁸	265 [§]	265 ⁸	264 ⁸	264 ⁸	268 ^s	280 ^T	264 ⁸
.6 ^{\$} 13.		9.80 ^{\$}	9.87/9.91 ^s	9.75 ⁸	9.67 ^{\$}	9.69 [§]	9.67 ^{\$}	9.66 ^{\$}	9.61 ^s	9.65 ⁸	8.90 ^T	9.47 ^s
05(B) ^S 0.1	2 ^S 0.14(J) ^T /0.15	(J) ^T 0.13 ^S	0.14 ⁸ /0.15 ⁸	0.14 ⁸	0.15 ^S	0.15 [§]	0.16 [§]	0.16 ^{\$}	0.16 [§]	0.17 ^S	0.17(J) ^T	0.17 ⁸
2(J) [§] 10.	$(2(J)^{S}) 9.0^{T}/8.7^{T}$	12.00(J+) [§]	10.50(J+) ^{\$} /10.50(J+) ^{\$}	10.10(J+) [§]	9.95(J+) ^{\$}	9.54(J+) ^{\$}	9.09(J+) [§]	8.81(J+) ^S	8.43(J+) ^S	8.18(J+) ^S	6.4 ^T	7.69(J+) [§]
1 ^s <5	1 ^s <0.033 ^T /<0.0	33 ^T <14 ^S	<14 ^S /<14 ^S	<14 ^{\$}	<14 ⁸	<14 ⁸	<14 ⁸	<14 ^{\$}	<14 ^{\$}	<14 ^{\$}	<0.033 ^T	<14 ⁸
2(J) ⁸ 382	$2(J)^S$ $170^T/170^T$	205(J) [§]	234(J) ^S /245(J) ^S	211(J) [§]	<494 ⁸	<494 ⁸	<494 [§]	<494 ⁸	<494 [§]	<494 ⁸	100 ^T	<494 ⁸
1 ^s <5	1^{S} $0.62(J)^{T}/<0.3$	3 ^T 0.40(J) ^C	0.49(J) ^C /0.71(J) ^C	<1.00°	0.53(J) ^C	0.28(J) ^C	0.82(J) ^C	0.47(J) ^C	0.43(J) ^C	0.59(J) ^C	<0.33 ^T	<1.00°
		142(J) [§]	136(J) ^{\$} /136(J) ^{\$}	131(J) [§]	130(J) ⁸	128(J) ⁸	126(J) ^S	125(J) ⁸	123(J) ^S	121(J) ^S	120 ^T	119(J) ^S
		21(J) [§]	21(J) [§] /21(J) [§]	20(J) ^S	20(J) [§]	20(J) [§]	20(J) [§]	20(J) [§]	20(J)§	20(J) [§]	21 ^T	19(J) [§]
		T <10 ^S	<10 ^S /<10 ^S	<10 ⁸	<10 ^S	<10 ^S	<10 ^S	<10 ^S	<10 ^S	<10 ^S	<0.08 ^T	<10 ^S
		<1.00\$	<1.00 ^S /<1.00 ^S	<1.00 ^S	<1.00 ^S	<1.00 ^S	<1.00 ^{\$}	<1.00°	<1.00 ⁸	<1.008	<0.1 ^T	<1.00 ^{\$}
			<4 ^S /<4 ^S	<4s	<4°	<4 ^S	<4s	<4 ⁸	<4 ⁸	<4 ⁸	<0.004 ^T	<4 ⁸
		<2.00 ^{\$}	2.2 ⁸ /<2.00 ⁸	<2.00 ^S	<2.00 [§]	<2.00 [§]	<2.00 [§]	<2.00 ^S	<2.00 [§]	<2.00 ^s	<0.5T	<2.00 ^{\$}
			<2.00 ^{\$} /<2.00 ^{\$}	<2.00 ^{\$}	<2.00 ⁸	<2.00 ⁸	<2.00 ^{\$}	<2.00 ⁸	<2.00 ^{\$}	<2.00 ^{\$}	<0.56 ^T	<2.00°s
		<67 [§]	<67 ^S /<67 ^S	<67 [§]	<67 ⁸	<67 ^s	<67 ^s	<67 [§]	<67 ^s	<67 ⁸	<22 ^T	<67 ^s
			NA	NA	NA	NA	NA	NA	NA	NA	<0.027↑	NA
		NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
		<14 ⁸	<14 ^{\$} /<14 ^{\$}		<14 ⁸	<14 ^S	<14 [§]	<14 ^S	<14 ^S	<14 ^S	0.42(J) ^T	<14 [§]
											7.6 ^T	<17 ⁸
		<1.00 ^S	<1.00 ^S /0.39(J) ^S	<1.00 ^S		<1.00 ^S	<1.00 ^S		<1.00 ^S			<1.00 ^S
			<0.06 ⁸ /<0.06 ⁸		<0.06 ^s	<0.06 ⁸	<0.06 ^s					<0.06 ⁸
			<1.00 ^S /<1.00 ^S									<1.008
												<2.00 ^{\$}
		<5.00 ^S										<5.00 ^{\$}
												291 ^s
												<7 ^{\$}
												<1.00\$
			NA	NA	NA	NA	NA	NA	NA	NA		NA
		<10 ^S	<10 ^S /<10 ^S	<10 ^s	<10 ^s	<10 ^s			<10 ^S	<10 ⁸		<10 ⁸
4 ⁸ <2	4 ⁸ <2 ^T /<2 ^T	<50°	<50 ^{\$} /<50 ^{\$}	<50°	<50 ^{\$}	<50°	<50 ^{\$}	<50 ^S	<50 ^{\$}	<50°	<2 ^T	<50 ^{\$}
4(.(J) s s s s s 1 ^s 7 ^s 4 ^s 4 ^s	J)\$ 11' \$\$ 26' <44 <44 <44 <49 <99 \$\$ >66 N2' \$\$ 144 <47 <49 <49 <49 <49 <49 <49 <49 <49 <49 <49	J)\$ 117(J)\$ 130 ^T /130 ^T 30 ^T /130 ^T 30 ^T /130 ^T 30 ^T /130 ^T 34 ^T /20 ^T 44 ^S 40.08 ^T /40.08 48 ^S 40.17/40.1 ^T 44 ^S 40.57/40.5 ^T 48 ^S 40.57/40.5 ^T 48 ^S 40.57/40.5 ^T 48 ^S 40.57/40.5 ^T 48 ^S 40.57/40.5 ^T 48 ^S 40.57/40.5 ^T 48 ^S 40.37/40.0 ^T 47 ^T /40.0 47 ^T /4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

EPA Region 8 Laboratory, Golden, CO U

U.S. Geological Survey National Water Quality Laboratory Chemtech Consulting (contractor to EPA)

R3 EPA Region 3 Laboratory, Fort Meade, MD A E ALS Environmental (Contractor to EPA)

Eberline Laboratory (contractor to USGS)

Data Qualifiers

Not analyzed NA

Estimated (non-attainment of quality control criteria or below reporting limit. R3 and ORD Las Vegas analysis are estimated because of method development)

Estimated (biased low due <70% matrix spike recovery in USG\$ samples, exceedance of holding time in R8 Phase IV samples, or other quality assurance factors)

Estimated (biased high due to >130% matrix spike recovery in USGS samples or other quality assurance factors)

Estimated (method development on alcohols) 65,66

Analyte in sample < 10X and < 5X concentration detected in a blank for EPA and USGS data respectively

Relative percent difference outside acceptance criteria D

Sample result rejected due to serious deficiencies in analysis

Acetone result in Phase V corrected from EPA (2012)

Test America Laboratory (Contractor to USGS and EPA)

Table SI E4a. Summary of Organic Compound Detections in MW02

Compound	EPA	EPA	EPA	EPA	USGS
	Phase III	Phase IV	Phase V 0412-1	Phase V 0412-2	Phase V 0412-2
Borehole Volumes	0.1	0.6	0.0	1.0	1.0
dissolved organic carbon (mg/L)	14.5°	19.7 ^o	19.4 ^o	15.5°	13 ^T
diesel range organics (µg/l)	1440(J) ^{R8}	4050(D) ^{R8} /4200(D) ^{R8}	4150 ^{R8}	2100 ^{R8}	670 ^T
gasoline range organics (µg/l)	3710 ^{R8}	2800 ^{R8} /3200 ^{R8}	4500 ^{R8}	5290 ^{R8}	6800 ^T /7700 ^T
benzene (µg/l)	246 ^{R8}	183 ^S /191 ^S	166 ⁸	232 ⁸	250 ^T /260 ^T
comeno (pg 1)	1	$139(J-)^{R8}/164(J-)^{R8}$	175(J) ^{R8}	247(J) ^{R8}	250 / 200
toluene (μg/l)	617 ^{R8}	482 ⁸ /464 ⁸	402 ^s	607 ⁸	690 ^T /710 ^T
, ,		336(J-) ^{R8} /424(J-) ^{R8}	$437(J)^{R8}$	$677(J)^{R8}$	
ethylbenzene (µg/l)	67.0 ^{R8}	68.7 ^S /62.0 ^S	61.1 ^s	677(J) ^{R8} 101 ^s	100 ^T /100 ^T
* * * * * * * * * * * * * * * * * * * *		$21.5(J-)^{R8}/27.0(J-)^{R8}$	57.0(J) ^{R8}	89.6(J) ^{R8} 894 ^S	
m,p - xylenes (μg/l)	572 ^{R8}	630 ^s /554 ^s	549 ^s		1000 ^T /1000 ^T
		$280(J-)^{R8}/354(J-)^{R8}$	578(J) ^{R8}	973(J) ^{R8}	
o-xylene (μg/l)	178 ^{R8}	175 ^S /160 ^S	161 ^s	245 [§]	260 ^T /250 ^T
	70	81.6(J-) ^{R8} /102(J-) ^{R8}	164(J) ^{R8}	253(J) ^{R8}	Tr Tr
isopropylbenzene (μg/l)	11.0 ^{R8}	$<12.5(J-)^{R8}/<12.5(J-)^{R8}$ 9.0	3(J) R8	9.40(J) ^{R8}	$11(J)^{T}/12(J)^{T}$
n-butylbenzene (μg/l)	<6.25 ^{R8}	$<12.5(J-)^{R8}/<12.5(J-)^{R8}$ 0.3		<5.0 ^{R8}	<6.4 ^T /<6.4 ^T
sec-butylbenzene (μg/l)	<6.25 ^{R8}	$<12.5(J-)^{R8}/<12.5(J-)^{R8}$ 1.0		<5.0 ^{R8}	<3.4 ^T /<3.4 ^T
tert-butylbenzene (μg/l)	<6.25 ^{R8}	$<12.5(J-)^{R8}/<12.5(J-)^{R8}$ 0.8		<5.0 ^{R8}	<3.2 ^T /<3.2 ^T
n-propylbenzene (μg/l)	5.75(J) ^{R8}	<12.5(J-) ^{R8} /<12.5(J-) ^{R8} 9.9		11.8(J) ^{R8}	$13(J)^{T}/12(J)^{T}$
p-isopropyltoluene (μg/l)	<6.25 ^{R8}	<12.5(J-) ^{R8} /<12.5(J-) ^{R8}	1.36(J) ^{R8}	<5.0 ^{R8}	<4.0 ^T /<4.0 ^T
styrene (μg/l)	<6.25 ^{R8}	$<12.5(J-)^{R8}/<12.5(J-)^{R8}$ 0.4		<5.0 ^{R8}	<3.4 ^T /<3.4 ^T
1,3,5-trimethylbenzene (μg/l)	35.5 ^{R8}	43.6 ^{\$} /35.0 ^{\$}	39.5 ⁸	71.4 [§]	86 ^T /91 ^T
1,2,4-trimethylbenzene (µg/l)	69.2 ^{R8}	84.1 ^s /67.2 ^s	77.0 ^s	148 ^s	140 ^T /150 ^T
		$18.5(J-)^{R8}/23.0(J-)^{R8}$			T . T
1,2,3-trimethylbenzene (μg/l)	NA	28.8 ⁸ /23.8 ⁸	27.6 ^s	45.5 ⁸	45 ^T /46 ^T
naphthalene (μg/l)	$1.41^{R8}/4.25(J)^{R8}$	4.61 ^S /3.87 ^S	4.89 ^S	7.49 ^S	$7.2(J)^{T}/7.9(J)^{T}$
		$3.32^{R8}/<5.0^{R8}$	$7.19(J)^{R8}/4.29^{R8}$	$7.20(J)^{R8}/4.78^{R8}$	
4 3 1 3 1 (1)	0.0088	<12.5(J-) ^{R8} /<12.5(J-) ^{R8}	2.22 ^{RS}	2.0588	0.5T
1-methylnapthalene (μg/l)	0.66 ^{R8}	1.03 ^{R8} /<5.00 ^{R8}	2.23 ^{R8}	2.85 ^{R8}	3.5 ^T
2-methylnapthalene (μg/l)	1.15 ^{R8}	1.75 ^{R8} /<5.0 ^{R8}	4.08 ^{R8}	5.52 ^{R8}	6.7 ^T
phenol (µg/l)	13.7 ^{R8}	14.5 ^{R8} /29.2 ^{R8}	32.7(J-) ^{R8} 22.2 ^{R8}	16.0 ^{R8}	23 ^T 25 ^T
2-methylphenol (μg/l)	13.8 ^{R8}	10.3 ^{R8} /20.9 ^{R8}		20.8(J) ^{R8}	45 ^T
3&4-methylphenol (µg/l)	26.2 ^{R8} 28.6 ^{R8}	$\frac{16.9(D)^{R8}/34.6(D)^{R8}}{23.2(D)^{R8}/46.3(D)^{R8}}$	39.8 ^{R8} 36.6(J+) ^{R8}	33.5 ^{R8} 32.0 ^{R8}	67 ^T
2,4-dimethylphenol (µg/l)	NA	581 ^S /583 ^S	862 ^S	802 ^s	<260 ^T
isopropanol (µg/l)	NA NA	<100 ^S /<100 ^S	63(J-) ^S	11.8(J†) ^S /<100(J-) ^S	NA
n-propanol (μg/l) methanol (μg/l)	NA NA	NA	<5000 ^A	<5000 ^A	NA NA
methanol (µg/1)	IVA	NA	>000	592(J†) ^s	IVA
tert-butyl alcohol (μg/l)	NM	4470 ⁸ /4580 ⁸	5910 ^s	5395(†) ⁸ /6120 ⁸	6300 ^T /6300 ^T
acetone (µg/l)	NA	641(J-) ^{R8} /616(J-) ^{R8}	1460 ^S	231 ^S	350 ^T /450 ^T
accione (µg/1)	1471	041(3-) 7010(3-)	982(J) ^{R8}	157(J) ^{R8}	330 1430
2-butanone (MEK) (μg/l)	NA	120(J-) ^{R8} /118(J-) ^{R8}	208(J) ^{R8}	86.2(J) ^{R8}	<120 ^T /<40 ^T
4-methyl-2-pentanone (MIBK) (μg/l) N		$12.5(J-)^{R8}/<12.5(J-)^{R8}$	<0.25 ^{R8}	<5.0 ^{R8}	<20 ^T
benzoic acid (µg/l)	244 ^{R8}	209(D) ^{R8} /364(D) ^{R8}	513 ^{R8}	110(D) ^{R8}	190 ^T
ethylene glycol (µg/l)	NA	NA	<5000 ^A	<5000 ^A	<8630 ^T
propylene glycol (µg/l)	NA	NA	<5000 ^A	<5000 ^A	<18700 ^T
diethylene glycol (R3) (μg/l)	NA	$1570(J+)^{R3}/1610(J+)^{R3}$	1260(J-) ^{R3}	378(J) ^{R3}	<7730 ^T
triethylene glycol (R3) (µg/l)	NA	310(J-) ^{R3} /293(J-) ^{R3}	262(J-) ^{R3}	72.3(J) ^{R3}	<8450 ^T
tetraethylene glycol (R3) (μg/l)	NA	27.2(J,B) ^{R3} /29.0(J-,B) ^{R3}	22.6(J-) ^{R3}	3.6(J) ^{R3}	NA
2-butoxyethanol (µg/l)	NA	$<0.10(J-)^{R3}/<0.10(J-)^{R3}$	6.8(J-) ^{R3}	<5.0 ^{R3}	TIC ^T
2 487		$<0.10(J_{-})^{R8}/<0.10(J_{-})^{R8}$	<1.0 ^{R8}	<1.0 ^{R8}	
ethyl ether (μg/l)	<6.25 ^{R8}	$12.5(J-)^{R8}/<12.5(J-)^{R8}$	1.94(J) ^{R8}	<5.0 ^{R8}	<5.2 ^T
nonylphenol (μg/l)	NA	NA	28(J-) ^L	7.4-7.9(J-) ^L	NA
octylphenol (µg/l)	NA	NA	2.9 (J-) ^L	$0.5 - 0.7(J)^{\hat{L}}$	NA
acrylamide (μg/L)	NA	NA	<0.20 ^L	<0.20 ^L	NA
lactate (µg/L)	NA	213 ⁸ /253 ⁸	250 ^s	<100 ^S	NA
formate (µg/L)	NA	558 ⁸ /584 ⁸	R	R	NA
acetate (µg/L)	NA	4310 ^S /4200 ^S	4800 ^s	2840(J) ^S	NA
propionate (µg/L)	NA	808 ^s /687 ^s	844 ^s	687(J) ^S	NA
adamantine (μg/L)	<6.25 ^{R8}	<12.5(J-) ^{R8} /<12.5(J-) ^{R8}	<0.25 ^{R8}	<5.0 ^{R8}	NA
1,3-dimethyl adamantine (μg/L)	>0.20 ^{R8} /<6.25 ^{R8}	$<0.10(J-)^{R8}/<5.0(J-)^{R8}$	<0.25 ^{R8}	<5.0 ^{R8}	NA
methylene blue active substances	NA	NA	<0.20 ^T	<0.20 ^T	$0.12(J)^{T}$
(mg/l)	ı	1	I	İ	1

Table SI E4b. Summary of Field Parameters, Major Ions, and Dissolved Metals at MW01

Compound	EPA Phase III	EPA Phase IV	EPA Phase V 0412-1	EPA Phase V 0412-2	USGS Phase V 0412-2
Borehole Volumes	0.1	0.6	0.0	1.0	1.0
Field Parameters					
pH	12.01	11.78	11.96	11.81	NM
specific conductance (µS/cm)	3812	3099	3313	2888(J)	NM
dissolved oxygen (mg/l)	0.0	0.02	0.02	0.01	NM
oxidation reduction potential (mV)	121	-108	-154	-148	NM
turbidity (NTU)	28.8	24.0	4.5	15.7	NM
alkalinity (mg/l CaCO3)	456	482	390	254	NM
Major Ions					
nitrate + nitrite (mg N/L) (mg/L)	0.379(B) ^o	<0.100°/<0.100°	0.056°	0.095°	< 0.019
ammonia (mg N/L)	1.95°	2.88°/2.82°	2.61°	1.23°	0.81(B)
SO4 (mg/l)	12.1°	62.6°/62.5°	81.8 ^o	13.5°	14
S (mg/L)	6.8(B)	$25.1(J)^{S}/25.0(J)^{S}$	32.1(J) ^S	7.38(J) ^S	NA
Cl (mg/l)	466°	457 ^o /456 ^o	469°	495°	520
Br (mg/l)	NA	<3.00°/<3.00°	<1.00°	<1.00°	1.9
F (mg/l)	1.01°	1.54(J) ^O /1.49(J) ^O	1.50°	1.16°	1.6
K (mg/l)	39.5(J) ^S	$43.6(J)^{S}/44.0(J)^{S}$	31.4(J) ^S	16.6(J) ^S	15.0
Na (mg/l)	420(J) ^S	448(J) ⁸ /449(J) ⁸	429(J) ^S	379(J) ^S	400(B)
Ca (mg/l)	73.3 ^s	60.5 ⁸ /60.6 ⁸	50.8 ^s	36.1 ^s	33.0
Mg (mg/l)	<0.05 ^S	$0.03(J)^{S}/0.02(J)^{S}$	<0.10 ^S	<0.10 ^S	49(J)
Si (mg/L)	3.00(J) ^S	2.94(J) ⁸ /2.93(J) ⁸	4.89(J+) ^S	5.00(J+) ^S	15.0
Dissolved Metals		()	,		
Αg (μg/L)	<51 ^S	<51 ^s	<14 ⁸	<14 ^S	<0.033
Al (μg/L)	577(J) ^S	684(J) ^S /736(J) ^S	660(J) ^S	816(J) ^S	700
As (µg/L)	<51 ^S	<51 ⁸ /<51 ⁸	3.1 ^s	3.4 ⁸	3.1(J)
Β (μg/L)	103(J) ^S	$109(J)^{S}/108(J)^{S}$	114(J) ^S	108(J) ^S	110
Ba (µg/L)	210(J) ⁸	93(J) ^{\$} /93(J) ^{\$}	95(J) ^ś	147(J) ^S	150
Be (µg/L)	<4 ^s	<4 ^S /<4 ^S	<10 ^s	<10 ^S	< 0.08
Cd (µg/L)	<4 ^S	<4 ^S /<4 ^S	<1.00 ^S	<1.00 ^s	<0.1
Co (μg/L)	<4 ^S	<4 ^S /<4	<4 ^S	<4 ^S	0.085
Cr (µg/L)	<4 ⁸	<4 ^S /<4 ^S	<2.00 ^s	<2.00 ^s	4.5
Cu (µg/L)	<9s	<9 ^S /<9 ^S	<2.00 ^s	4.4 ^s	3.7
Fe (µg/L)	<63 ^s	19(J) ^S /<63 ^S	<67 ^s	151 ^s	400
Hg (μg/L)	NA	NA	NA	NA	< 0.027
Li (µg/L)	NA	NA	NA	NA	25
Mn (μg/L)	<4 ^S	<4 ^S /<4 ^S	<14 ^S	<14 ^S	5.6
Μο (μg/L)	14 ^s	13 ⁸ /14 ⁸	6(J) ^S	<14 ^S	2.1
Ni (μg/L)	4 ⁸	2 ^S /2(J) ^S	4.3 ^s	2.6 ^s	6
Ρ (μg/L)	<0.014 ^s	$0.014(B)^{S}/0.024(B)^{S}$	<0.06 ^s	<0.06 ^s	65
Pb (μg/L)	<11 ^s	<11 ^S /<11 ^S	<1.00 ^S	<1.00 ^S	< 0.018
Sb (µg/L)	R ^s	R ^S /R ^S	<2.00 ^S	<2.00 ^s	1.3(B)
Se (µg/L)	14(J) [§]	<16 ^S /9(J) ^S	4.7(J) ^S	4.9(J) ^S	< 0.7
Sr (µg/L)	2020 ^s	1780 ⁸ /1790 ⁸	1260 ^s	806 ^s	780
Ti (μg/L)	<4 ^S	<4 ^S /<4 ^S	<7 ^S	<7 ^S	2.7(J)
Tl (μg/L)	<37 ^s	R ^S /R ^S	<1.00 ^s	<1.00 ^S	< 0.05
U (μg/L)	NA	NA	NA	NA	< 0.05
V (μg/L)	<7s	<7 ^S /<7 ^S	<10 ^S	<10 ^S	2.1(J)
Zn (μg/L)	<24 ⁸	32 ⁸ /24 ⁸	<50 ^S	<50 ^S	49

<u>Laboratories</u> (Superscript)

S Shaw Environmental, Ada, OK (Contractor to EPA) O EPA ORD Ada, OK

EPA ORD, Las Vegas, NV R8 EPA Region 8 Laboratory, Golden, CO

R3 EPA Region 3 Laboratory, Fort Meade, MD T Test America Laboratory (Contractor to USGS and EPA)
U USGS Laboratory A ALS Environmental (Contractor to EPA)

USGS Laboratory A ALS Environmental (Contractor to EPA)
Chemtech Consulting (contractor to EPA)

Data Qualifiers

NA Not analyzed

J Estimated because of non-attainment of cer tain quality control criteria or concentration below quantitation limit. R3 and ORD Las Vegas analysis are estimated because of method development.

J- Result is estimated because but may be biased low due <70% matrix spike recovery in USGS samples, exceedance of holding time in R8 Phase IV samples, or other quality assurance factors.

J+ Result is estimated but may be biased high due to >130% matrix spike recovery in USGS samples or other quality assurance factors.

J(†) Estimated because of method development on alc ohols (Shaw 2012,,b)

Analyte in sample < 10X and < 5X concentration detected in a blank for EPA and USGS data respectively

D Relative percent difference outside accepta nce criteria

R Sample result rejected due to serious deficiencies in analysis

Table SI E5. Light Hydrocarbon and Isotope Analysis of Production Wells and EPA Monitoring Wells

	BH	C_1	C ₂	C ₃	C_4	14C1	$\delta^{13}C_1$	δDC ₁	$\delta^{13}C_2$	δDC ₂	$\delta^{13}C_3$	δDC ₃	δ ¹³ iC ₄	δ ¹³ nC ₄
	vol	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(%	(%)	(%)	(‰)	(%)	(‰)	(%)	(‰)	(%)
						pmc)								
Johnson and Rice (1993)							•							
Tribal Pavillion 14-6 (WR) (g)						NA	-39.24	NA	NA	NA	NA	NA	NA	NA
Govt 21-5 (WR) (g)						NA	-40.2	NA	NA	NA	NA	NA	NA	NA
Tribal Pavillion 41-9 (FU) (g)						NA	-38.04	NA	NA	NA	NA	NA	NA	NA
Tribal Pavillion 14-11 (FU) (g)						NA	-38.4	NA	NA	NA	NA	NA	NA	NA
Blankenship Fee 4-8 (FU) (g)						NA	-38.08	NA	NA	NA	NA	NA	NA	NA
Phase II		•	•		•	•	•	•	•	•	•	•		•
Tribal Pavillion 14-10 (WR) (PGPP01)						NA	-38.75 ^I	-203.4 ^I	-26.93 ^I	-162.5 ^I	-24.93 ^I	-147.2 ^I	-25.83 ^I	-25.26 ^I
Tribal Pavillion 43-10 (FU) (PGPP02)						NA	-39.07 ^I	-212.99 ^I	-25.99 ^I	-157.5 ^I	-19.40 ^I	NA	NA	-23.87 ^I
Tribal Pavillion 24-2 (WR) (PGPP04)						NA	-39.26 ¹	-204.9 ^I	-26.79 ^I	-166.2 ^I	-25.33 ^I	-148.0 ^I	-25.66 ^I	-25.05 ^I
Tribal Pavillion 33-10 (FU) (PGPP05)						NA	-39.051	-207.3 ^I	-26.21 ¹	-161.1 ¹	-18.46 ^I	-101.7 ¹	-23.96 ^I	-23.64 ^I
Tribal Pavillion 14-2 (FU) (PGPP06)						NA	-39.281	-215.3 ^I	-26.42 ^I	-162.3 ^I	-24.01 ¹	-145.2 ^I	-25.33 ^I	-24.87 ^I
MW01	1	1	1		1		ı		1		1	1	1	1
EPA Phase III	0.3	16.0 ^s	2.23 ^s	0.79 ^s	0.158 ^s	NA	-38.89 ^I	-191.3 ¹	-26.55	NA	-23.85 ^I	NA	NA	NA
EPA Phase III(g)	0.3	10.0	2.23	0.79	0.136	<0.2 ^I	-39.44 ^I	-191.3 -209.1 ¹	-26.63	-165.0 ^I	-23.76 ^I	-143.7 ^I	NA NA	NA NA
EPA Phase IV	0.7	17.93 ^s	2.95 ⁸	1.25 ^s	0.172(J) ^S	NA	-39.44 -38.88 ^I	-203.1 -211.6 ^I	-26.70	NA	-24.40 ^I	NA NA	-25.3 ^I	-24.4 ^I
EPA Phase IV(g)						NA	-39.25 ¹ / -39.28 ¹	-211.0 ¹ / -211.2 ¹ / -210.1 ¹	-26.67 ^I / -26.67 ^I	-166.8 ^I / -167.4 ^I	-23.74 ^I / -23.91 ^I	-146.1 ^I / -146.6 ^I	NA NA	NA NA
USGS Phase V	1.6-3.0	27.5 T/30.5T 26 ^{UC} /26 ^{UC}	3.6(J+) ^T / 4.0(J+) ^T	1.4 ^T / 1.3 ^T	NA	2.22 ^w	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
EPA Phase V 0412-4	1.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPA Phase V 0412	1.8	17.3 ^s /17.3 ^s	2.38 ^s / 2.21 ^s	0.763 ^s / 0.663 ^s	0.199 ^s / 0.169 ^s	NA	-38.2 ¹	-205.3 ^I	-26.5 ^I	NA	NA	NA	NA	NA
EPA Phase V 0412-2	2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-3	2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-5	2.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-7	2.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-6	2.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-8	2.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-9	3.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
USGS Phase V	3.0	25.5 ^T /27.0 ^T 28 ^{UC}	$3.2(J+)^{T}/$ $3.3(J+)^{T}$	1.1 ^T / 1.0 ^T	NA	1.53 ^w	-38.54 ^I	-208.0 ^I	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-10	3.3	18.8 ^s	18.8 ^s	0.715 ^s	0.184 ^s	NA	-38.5 ¹	-205.9 ^I	-26.6 ^I	NA	NA	NA	NA	NA
MW02								-		•			•	
EPA Phase III	0.1	18.99 ^s	3.20 ^s	1.82 ^s	NA	NA	-41.83 ^I	-203.8	-26.4 ^I	NA	-24.28 ^I	NA	NA	NA
EPA Phase III(g)						<0.2 ^I / <0.2 ^I	-41.85 ^I / -41.72 ^I	-209.4 ^I /- 209.2 ^I	NA	NA	NA	NA	NA	NA
EPA Phase IV	0.6	18.82 ^s	2.55 ^s	2.26 ^s		NA	-41.30 ^I / -41.37 ^I	-210.7 ^I / -208.2 ^I	-26.25 ^I / -26.28 ^I	NA	-24.29 ^I / -24.28 ^I	NA	-25.3 ^I / -25.3 ^I	-24.3 ^I / -24.5 ^I
EPA Phase IV(g)						NA	-41.05 ^I / -41.01 ^I	-208.9 ^I / -210.8 ^I	-26.10 ^I / -26.09 ^I	-170.5 ^I / -171.4 ^I	-24.05 ^I / -24.06 ^I	NA	NA	NA
EPA Phase V 0412-1	0.0	19.10 ^s	3.06 ^s	1.58 ^s	0.380 ^s	NA	-41.2 ^I	-209.1 ^I	-26.2 ^I	NA	NA	NA	NA	NA
EPA Phase V 0412-2	1.0	22.00 ^s	3.07 ^s	1.78 ^s	0.517 ^s	NA	-41.2 ^I	-199.6 ^I	-26.3 ^I	NA	NA	NA	NA	NA
USGS Phase V 0412-2	1.0	32.00 ⁸	4.90 ⁸	2.20 ^s	NA NA	NA	NA.	NA NA	NA NA	NA	NA	NA	NA	NA

BH - Borehole

S - Shaw Environmental

T – Test America

UC – USGS Reston Chlorofluorocarbon Laboratory W – Woods Hole Oceanogrpahic Institute

Table SI E6. Dissolved Inorganic Carbon, Water Isotopes, Tritium, SF₆, and He in MW01 and MW02

	Borehole Volumes	DIC (mg/L)	δ ¹³ DIC (‰)	δ ² H (‰)	δ ¹⁸ Ο (‰)	Tritium (pCi/L)	SF ₆ (fg/kg)	He (10 ⁻⁹ cm ³ /g water)	Rn-222 (pCi/L)	Rn-226 (pCi/L)	Rn-228 (pCi/L)
MW01		***************************************									
EPA Phase III	0.3	26.9°	-12.18 ^I	-113.8 ^I	-13.8 ^I	NA	NA	NA	NA	NA	NA
EPA Phase IV	0.7	12.7°	-12.011	-109.5 ¹	-13.3I	NA	NA	NA	NA	NA	NA
USGS Phase V	1.6-3.0	20 ^T /19 ^T	-14.39 ^w	-113 ^{US} / -113 ^{US}	-13.32 ^{US} / -13.32 ^{US}	0.60 ^{UM}	<1.00 ^{UC}	1170 ^{UC} / 1190 ^{UC}	1060 ^U	0.087 ^E	0.16(R) ^E
EPA Phase V 0412-4	1.6	NA	NA	-112.9 ^I	-13.3 ^I	NA	NA	NA	NA	NA	NA
EPA Phase V 0412	1.8	15.2°/ 15.2°	-11.70 ^I / 12.13 ^I	-113.1 ¹ / -113.0 ¹	-13.2 ^I / -13.3 ^I	<0.80 ^I / <0.80 ^I	NA	NA	NA	NA	NA
EPA Phase V 0412-2	2.1	NA	NA	-113.0 ¹	-13.3 ^I	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-3	2.3	NA	NA	-113.0 ^I	-13.3 ^I	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-5	2.4	NA	NA	-113.1 ^I	-13.3 ^I	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-7	2.6	NA	NA	-113.2 ^I	-13.3 ^I	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-6	2.7	NA	NA	-113.2 ^I	-13.4 ^I	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-8	2.9	NA	NA	-113.3 ^I	-13.4 ^I	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-9	3.0	NA	NA	-113.4	-13.3 ^I	NA	NA	NA	NA	NA	NA
USGS Phase V	3.0	21 ^T	-14.11 ^W	-113 ^{US}	-13.39 ^{US}	0.30 ^{UM}	<1.00 ^{UC}	2940 ^{UC}	NA	0.100 ^E	0.23 ^E
EPA Phase V 0412-10 3.3		19.1°	-11.94 ^I	-113.6 ^I	-13.3 ^I	< 0.80 ^I	NA	NA	NA	NA	NA
MW02											
EPA Phase III	0.1	20.4°	NA	-117.4 ^I	-14.6 ^I	NA	NA	NA	NA	NA	NA
EPA Phase IV	0.6	1.40°/ 1.39°	DIC too low	-113.4 ^I / -113.5 ^I	-14.2 ^I / -14.3 ^I	NA	NA	NA	NA	NA	NA
EPA Phase V 0412-1	0.0	1.25°	DIC too low	-116.3 ^I	-14.2 ^I	<0.80 ^I	NA	NA	NA	NA	NA
EPA Phase V 0412-2	1.0	2.26°	DIC too low	-116.8 ^I	-14.2 ^I	<0.80 ^I	NA	NA	NA	NA	NA
USGS Phase V 0412-2 1.	b	4.6 ^T	NA	NA	NA	NA	NA	NA	NA	NA	NA

857 E - Eberline Laboratory (contractor to USGS)

I - Isotech

863

864

865

866

867 868

869 870

871

872

873

874

875

876

877

878

879

856

858 859 U - U.S. Geological Survey National Water Quality Laboratory 860

UC - USGS Restn Chlorofluorocarbon Laboratory

861 UM - USGS Menlo Park Tritium Laboratory

862 US - USGS Reston Stable Isotope Laboratory

W – Woods Hole Oceanogrpahic Institute

E.5 Discussion of Potential Cement-pH Interaction

Elevated pH levels (~12 standard units) were observed during purging and sampling at MW01 and MW02 during Phase III, IV and V sampling events (Figure SI E5). During a period of extensive purging at MW01 (over 5000 L) during the Phase V sampling event, specific conductance decreased from 3.93 to 1.31 mS/cm before stabilizing and pH decreased from 12.14 to 10.70.

Simulations were conducted to evaluate whether trends in pH and specific conductance were due to insufficient purging. Observed specific conductance and pH as a function of time during the Phase V sampling event; calculated casing, borehole, and screen exchange volumes; estimated fraction of stored casing water in the sampling train; and simulated sample train/formation concentration ratios (C_P/C_F) as a function of hypothetical initial screen/formation concentration ratios (C_0/C_F) and initial casing/formation concentration ratios (C_C/C_F) are illustrated in Figure SI E6a. In all calculations, the initial concentration in the screen (C_0) was set equal to casing concentration (C_C) or $C_0/C_F = C_C/C_F$. Pumping rate and observed drawdown are illustrated in Figure SI E6b.

Simulations indicated that the fraction of casing to formation water entering the sampling train at MW01 during the Phase V sampling event fell below 0.1% at 0.81 borehole volumes and was at 0.003% during the time of first EPA sample collection during the Phase V sampling event. During purging, 26

screen exchanges (casing volume of screen plus annular space outside screen). Regardless of the initial hypothetical condition, when C_0/C_F and C_C/C_F were less than unity (i.e., initial concentration in casing and well screen less than surrounding formation), sampling train concentration reached 99% of formation concentration by 0.81 borehole exchanges. When initial hypothetical values of C_0/C_F and C_C/C_F were set at values greater than unity (initial concentration in casing and well screen greater than the surrounding formation due to potential well construction effects), sample train concentration reached 101% constant formation concentration by 1.26, 1.48, 1.65, and 1.84 borehole volumes for C_0/C_F and C_C/C_F values of 1.5, 3, 10, and 100, respectively. When C_0/C_F and C_C/C_F was set to an extreme value of 1000, sample train concentration reached 101% constant formation concentration by 2.27 borehole volumes.

pH declined during purging during all three sampling events in an approximately linear fashion (Figure SI E7). Specific conductance declined rapidly and then stabilized after approximately one borehole volume. If reduction in pH and specific conductance were due to dissolved solids remaining in well casing as a result of drilling and/or well construction materials, this would correspond to $C_0/C_F = C_C/C_F$ values between 10 - 100 for pH and 3 for specific conductance. Reduction in pH and specific conductance and pH during purging occurred much more slowly than would be expected if dissolved solids remained in well casing as a result of well construction effects.

Figure SI E5. Trends in pH and specific conductance during purging at MW01 during Phase III, IV, and V sampling events as a function of purge volume and borehole volumes (1 borehole volume ~ 1500 L). Times of sample collection illustrated by straight bars

Figure SI E6. (a) Observed decrease in pH (in mmoles/L) and specific conductance during purging as a function of time during the Phase V sampling event in MW01. Increase in casing volumes (up to 3.8), borehole volumes (up to 3.4), and screen exchanges (up to 26), and EPA sample collection times (approximately 30 minutes in duration) illustrated. Simulation of fraction of store casing water in sample train (0.003% at first sample collection), sample train (C_P) / formation (C_F) concentration ratios as a function of initial screen C_0 and casing C_C /formation (C_F) concentration ratios using a casing plug flow – screen mixing wellbore process model illustrated. (b) Rise in water level in well casing as a result of reduced pumping rate in MW01 during Phase V sampling.

The pH of produced water samples varied from 5.6 to 9.0 standard units (Figure SI E7a). However, pH measurements from produced water samples were primarily from production wells where CO₂ foam was used for hydraulic fracturing. There was substantial variation in hydraulic fracturing practices over time and throughout the field. Potassium hydroxide (KOH) was used for hydraulic fracturing. In ground water having sodium - sulfate (Na-SO₄) type composition, small quantities of KOH addition could result in pH approaching 12 units²⁷. Water flowing to the surface at Tribal Pavillion 13-1 during Bradenhead testing had a pH of 10.86 and nearly all Bradenhead gas samples were devoid of CO₂ (Table SI D3) suggesting elevated pH above intervals of stimulation. There was also an anomalous trend of increasing pH with depth in domestic wells (Figure SI E7b).

Water from MW01 and MW02 was highly undersaturated with respect to portlandite (Ca(OH)₂) at -4.3 and -2.3 during the Phase V sampling event, respectively. Water in contact with hydrating cement is saturated or oversaturated (saturation index greater than 0) to portlandite⁶⁷⁻⁶⁹ and remains oversaturated prior to degradation (e.g. carbonation)⁷⁰⁻⁷³. Calcium concentrations in MW01 and MW02 were typical of domestic wells (Figure SI E8a) displaying random scatter with depth (Figure SI E8b). Calcium concentrations should be significantly elevated in the presence of cement interaction⁷⁴.

Another explanation of elevated pH in MW01 at the start of purging with decrease during purging could be progressive intake of formation water more distal from the screen that has undergone less degassing. Water underwent vigorous degassing and foaming during purging at MW01 and MW02 indicating total dissolved gas pressure (TDGP) significantly above atmospheric pressure (Figure SI E9). During the Phase IV sampling event, pump cavitation occurred at MW02 after removal of 1287 L of water with 40 m of hydrostatic head from the base of the borehole indicating 4.7 atm or 0.48 MPa TDGP (atmospheric pressure = 0.86 atm). Degassing in the immediate vicinity of the borehole could result in removal of carbon dioxide and conversion of bicarbonate/carbonate to non-carbonate alkalinity:

$$HCO_3^- \rightarrow CO_{2(g)} + OH^-$$

 $CO_3^{2-} + H_2O \rightarrow CO_{2(g)} + 2OH^{-}$

During purging at MW01 in the Phase V sampling event, DIC increased from 15.2 to 19.1 mg/L as pH decreased from 11.34 to 10.71. During development of MW01 in August 2010, prior to gas entry, documented by measurement of lower explosive levels in well casing, pH varied from 8.72 to 9.06 standard units during removal of 33,300 L of water.

E.6 Discussion of Potential Cement-Potassium Inter action

Similar to pH, elevated potassium may be the result of interaction with cement. Alkalis in cement are present as readily soluble sulfates (K_2SO_4 and Na_2SO_4) and less soluble oxides (K_2O and Na_2O) in the major clinker minerals^{70-72,75} leading to high alkali and sulfate concentrations during the first hours of hydration⁷⁶.

Potassium and calcium concentrations were positively correlated in domestic well and monitoring wells with apparent random scatter in bradenhead and produced water samples (Figure SI E10). With exception of EPA monitoring wells, potassium concentrations generally decreased with depth (Figure SI 11a) which was reduced to random scatter when potassium was normalized by calcium concentrations (Figure SI E11b).

 Potassium concentrations decreased during purging at MW01 during the Phase V sampling event while calcium, silicon, chloride, and fluoride remained fairly constant or decreased at a slower rate (Figure SI E12a). Concentrations of sodium and strontium decreased (Figures SI E12b, c) while sulfate increased purging (Figures SI E12b). Given that soluble sulfates are associated with curing cement, sulfate concentrations should be decreasing rather than increasing. Interaction of strontium with cement is unknown.

Figure SI E7. (a) Box and whisker plots of minimum, quartiles, median (line), mean (cross), and maximum values of pH of domestic wells (PGDWXX) greater than 1 km from a production well, domestic wells less than 1 km from a production wells, MW01, MW02, produced water, and Bradenhead water samples. Mean values are represented for domestic well locations sampled more than once. Produced water and bradenhead locations were sampled once. Measurement at MW01 and MW02 represent samples collected during Phase III, IV, and V sample events to illustrate variability. (b) pH levels in domestic wells (PGDWXX) less than and greater than 1 km of a production well (red and blue respectively) and monitoring wells as a function of absolute mean seal level (AMSL). All data points are illustrated for locations sampled more than once.

Figure SI E8. (a) Box and whisker plots of minimum, quartiles, median (line), mean (cross), and maximum values of Ca of domestic wells (PGDWXX) greater than 1 km from a production well, domestic wells less than 1 km from a production wells, MW01, MW02, produced water, and Bradenhead water samples. Mean values are represented for domestic well locations sampled more than once. Produced water and bradenhead locations were sampled once. Measurement at MW01 and MW02 represent samples collected during Phase III, IV, and V sample events to illustrate variability. (b) Ca levels in domestic wells (PGDWXX) less than and greater than 1 km of a production well (red and blue respectively) and monitoring wells as a function of absolute mean seal level (AMSL). All data points are illustrated for locations sampled more than once.

Figure SI E9. Photograph of foam in YSI flow cell during purging at MW01

Figure SI E10. Potassium as a function of calcium concentration for domestic wells (PGDWXX) less than and greater than 1 km of a production well, monitoring wells MW01 and MW02, production wells, and bradenhead samples. Mean values are represented for domestic well locations sampled more than once. Produced water and bradenhead locations were sampled once. Measurement at MW01 and MW02 represent samples collected during Phase III, IV, and V sample events to illustrate variability.

Figure SI E11. (a) Potassium concentration and (b) potassium/calcium concentration ratios for domestic wells (PGDWXX) less than and greater than 1 km of a production well, monitoring wells MW01 and MW02, production wells, and bradenhead samples as a function of absolute mean sea level (AMSL). Domestic wells are identified when sampled more than once.

E.7 Discussion of Potential Cement-Glycol Interacti or

Polar organic compounds, including diethylene glycol (DEG) are used to reduce the energy required to grind clinker material for cement⁷⁷⁻⁸⁰. Thus, it is plausible that detection of glycols in monitoring wells is due to interaction with cement. Smith et al.⁸¹ determined bulk concentrations of glycols and 2-butoxyethanol (2-BE), and a number of selected organic compounds in 5 Type I/II Portland cement samples and conducted a 5-day leaching study on the cured cement sample having the highest bulk concentrations of glycols. DEG, triethylene glycol (TEG), and tetraethylene glycol (TREG) were detected after the last aqueous exchange at concentrations of 97, 250, and 52 μg/l, respectively. 2-BE was not detected.

Figure SI E12. Concentration variation of a) potassium (K), calcium (Ca), silicon (Si), dissolved inorganic carbon (DIC), chloride (Cl), and fluoride (F); (b) sodium (Na) and sulfate (SO₄); and (c) Strontium (Sr), magnesium (Mg), boron (B), and aluminum (Al) during purging at MW01 as a function of borehole volume during Phase III, IV, and V sampling events.

During its national study on hydraulic fracturing, EPA conducted analysis of glycols using high performance liquid chromatography with dual mass spectrometry (HPLC-MS/MS) at five retrospective study areas with non-detection at 83 domestic wells sampled⁸²⁻⁸⁶. Glycols were only detected in a produced water sample⁸⁶. Using HPLC-MS/MS analysis, glycols were detected at domestic wells sampled

in the Pavillion investigation. The discrepancy in detection of glycols in leachate and domestic well samples may be due variation in use of cement for domestic well construction, product variability, and exposure factors (i.e. dilution, cross-sectional exposure area, etc.) commonly used to evaluate impact of construction materials on water quality.

In EPA Method 1315⁸⁷, a solution to diffusive mass transfer through a semi-infinite media (Crank⁸⁸) is utilized to evaluate mass flux from monolithic samples:

1020
$$Flux = D\rho \left(\frac{\partial C}{\partial x}\right)_{x=0} = \frac{D\rho C_0^*}{\sqrt{\pi Dt}}$$

1021 Flux = diffusive flux ($\mu g/m$ ² s)

- C_0 = initial concentration in cement ($\mu g/kg$)
- ρ = density of cement (kg/m 3)
- 1024 D = diffusion coefficient of diffusing species (m $^{2}/s$)
- t = time(s).

Using this approach, concentration in a well during purging (C_{well}) (µg/L) can then be estimated by

$$C_{well} = \frac{(flux)(SA)}{flow}$$

To evaluate mass flux from cement at MW01, an unrealistic worst-case scenario of complete encasement of cement around a 22 cm (8.5") diameter pre-packed screen was assumed (surface area = $4.13~\text{m}^2$ or $6406~\text{in}^2$) with bulk DEG concentration of $37,000~\mu\text{g/kg}$ from Smith et al.⁸¹. Diffusivity of cured cement was set equal to $10^{-12}~\text{m}^2/\text{s}$ (EPA 2010b) with density of 1850 kg/m³ (density of cement varies from 1200 - 2500 kg m³). An average flow rate of 16 LPM (flow from MW01 during the Phase V sampling event varied from 8 to 24 LPM) was assumed. The hypothetical concentration of DEG in MW01 decreased from $2.0~\mu\text{g/L}$ at day 1 to below detection at $0.083~\mu\text{g/L}$ on day 600 - the approximate time for Phase V sampling after curing of cement. Using the maximum bulk concentration determined by Smith et al.⁸¹ for TEG (79,000 $\mu\text{g/kg}$) a hypothetical concentration of TEG in MW01 decreased from $43.5~\mu\text{g/L}$ at day 1 to below detection at 0.178~ug/L on day 600.

Glycols decreased during purging in the Phase V sampling. However, compound classes and compounds (GRO, DRO, phenols) not associated with cement also decreased during purging (Figure SI E13) suggesting alternative explanations such as aquifer physical and chemical heterogeneity.

Figure SI E13. Concentration of diethylene glycol (DEG) and triethylene glycol (TEG), as a function of borehole volume during Phase III and IV sampling events and while purging during the Phase V sampling event. Concentrations of gasoline range organics (GRO), diesel range organics (DRO), phenol, and isopropanol included for comparison.

Section F - Potential Impact of Unlined Pits on Domestic Wells

1047 1048 1049

1046

Table SI F1. Summary of disposal of drilling mud and production fluids in from production wells

	Unlined Pits Used to Dispose Invert Mud	Unlined Pits Used to Dispose WBM	Unknown Disposal of WBM	Disposal of WBM at Lozier Area	WBM Used on Location	WBM Disposed in Lined Pits	Offsite Disposal of WBM	Totals
Pits Likely Used for Disposal of Production Fluids	41	3	0	0	0	0	0	44
No Production Fluids	16	4	0	0	0	7	0	27
Offsite Disposal of Production Fluids	0	0	10	8	19	26	47	110
Totals	57	7	10	8	19	33	47	181

1050 1051 WBM – water based mud

† - used to construct berms or spread out on site

.052 .053 .054 **Table SI F2.** Summary of disposal of drilling mud and production fluids in pits, results of soil and surficial ground-water sampling, volumes of soil excavation, distance and direction of domestic wells with 600 m of pits, review of completion and stimulation record by WOGCC³¹ of production wells associated with unlined pits, and recommendations by WOGCC³² for further or no further investigation.

	OUCC I	JI IGIGIO	1 01 110 10	artifer in	1,00015	duoii.	4.0000000000000000000000000000000000000	•			10 100000000000000000000000000000000000				Exemple and the second	
Production Well Abbreviation	Drilling Mud Used Below Surface Casing	Pit Used or Likely Used to Dispose Drilling Mud and Cuttings Onsite	Pit Used or Likely Used for Disposal of Production Fluids?	Stimulated Prior to Jan 1995?	Number of Soil Screening Locations	Maximum Soil Contamination (mg/kg) and Number of Soil Samples	Excavation Volume (yd²)	Ecxcavation Criterion (mg/kg TPH)	Number of Ground-Water Sampling Locations	Maximum Ground-Water Confamination in Surficial Deposits (ugl) and Number of Ground-Water Samples	Surficial Geology	Domeste Wells Within 600 m of Production Wells (Depth, Distance, Direction from Production well)	Stimulation Record Reviewed by WOGCC (2014)	Adequate Site Assessment as Judged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	Comments
MHR 1	"Chem Gel"	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	PGDW41	Yes	NI	No	Completed amd P&A in 1953. No production or
14-12	Invert	Yes ^U	Yes	Yes	20	GRO:340 (n=23) DRO:4300 (n=23) Benzene: ND (n=20) Toluene: ND (n=20) Ethylbenzene: 0.066 (n=20) Xylenes: 0.085 (n=20)	~1,306	1,000	7	GRO: ND (n=7) DRO: 1,300 (n=7) Benzene: ND (n=7) Toluene: ND (n=7) Tolybenzene: ND (n=7) Ethylbenzene: ND (n=7) Xylenes: ND (n=7)	Qa	(31m,314m,NW) PGDW22 (?m,261m,SW) PGDW32 (206m,563m,SE) P22660.0P (53m,407m,SE) P22661.0P (15m,535m SE)	No	VRP	VRP	stimulation. Acid stimulation in 1960. Hydraulic fracturing in 1964 with "salt water." Well flowed "diesel and load water." Acid stimulation with additives in 1980. No description of where flowback and other production fluids were disposed. No produced water from 1978 (records start) through 1983 (shut-in). Sundry notice in Jan 1998 for offsite disposal of production fluids. Encana waiting approval from WYDEQ for closure.
23-7	Q-Broxin Gel	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	CR UW09/250 (?,361m, NE)	No	NI	Yes	Well completed and P&A in 1961. Q-BROXIN Gel used. Well history missing from well completion report. Production and stimulation unlikely.
W 1	"Gel"	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	?	None	No	NI	No	Well completed and P&A in 1961. Production and stimulation unlikely.
23-2	Invert	Yes ^U	Yes	Yes	10	TPH: ND (n=2)	0	1,000	0	Not sampled	Qa	None	No	No	Yes	Well completed in 1962. Hydraulic fracturing in 1965 - no description. No description of where flowback and other production fluids were disposed. Production records from 1978. No produced water until 2004. Sundry notice for offsite disposal of production fluids in Jan 1998. Two separate pit locations.
22-35	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	?	None	No	NI	No	Completed & P&A in 1963. Stimulation unlikely.
GOL 1	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Well completed in 1963. P&A in 1974. No information available on production or stimulation.
14-1	Invert	Yes ^U	Yes	Yes	5	TPH: 3790 (n=5) (Confirmation sample)	~1,400	2,500 or 4,000	0	Not sampled	Qa	PGDW36 (31m,296m,SW)	No	No	Yes	Well completed in 1963. Hydraulic fracturing with undiluted diesel fuel in 1964. In 1993, acid stimulation. No description of where flowback and other production fluids were disposed. Production records from 1978 with 789 bbls produced water prior to 1993. Sundry notice in 1993 to plug water bearing perforation. Sundry notice in Jan 1998 for offsite disposal of production fluids. Post excavation soil TPH exceeded 4000 mg/kg.
21-8	Invert	Yes ^U	Yes	?	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Well completed in 1963. P&A date unknown. Well history missing from well completion report.
21-5	Invert	Yes ^U	Yes	?	13	TPH: 327 (n=8) (Confirmation sample)	~60	7,000	0	Not sampled	Qa	None	No	Yes	No	Well completed in 1963. No documented stimulation until 1999. Production records from 1978. No produced water until 1995. Sundry notice for offsite disposal of production fluids in Jan 1998.
U 13-13	Invert	Yes ^U	Yes	?	5	TPH: 16 (n=5)	0	1,000	0	Not sampled	?	P60032.0W (26m,99m,W)	No	No	Yes	Well completed in 1963. Information on completion missing from well completion report. Production records from 1978. No produced water until 2007. Sundry notice for offsite disposal of production fluids in Jan 1998.
14-6	Invert	Yes ^U	Yes	?	5	TPH: 1298 (n=5) (Confirmation sample)	120	2,500	0	Not sampled		?	No	?	?	Well completion in 1963. Information on completion missing from well completion report. Production records from 1978. No produced water until 2005. Further investigation by WOGCC dependent on potential presence of nearby domestic well.
32-4	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Completed & P&A in 1963. Stimulation unlikely.
24-14	Invert	Yes ^U	Yes	?	11	TPH: 3910 (n=4)	0	4,000	0	Not sampled	Qa	P59499.0W (34m,330m,NW) P24502.0P (55m,360m, E) PGDW34 (31m,474m, NE)	No	No	Yes	Well completed in 1963. No documented stimulation but completion record not reviewed by WOGCC (2014). Production records from 1978. No produced water until 2004 but sundry notice for offsite disposal of production fluids in Jan 1998.

Production Well Abbreviation	Drilling Mud Used Below Surface Cashig	A Pit Used or Likely Used to Dispose Drilling Mud and Cuttings Onsite	2 Pr Used or Likely Used for Disposal of Production Fluids?	No Stimulated Prior to Jan 1995?	ONumber of Soil Screening Locations	Maximum Soil Contamination (mg/kg) and Number of Soil Samples	© Excavation Volume (yd²)	Ecxeavation Criterion (mg/kg TPH)	ONumber of Ground-Water Sampling Locations	Maximum Ground-Water Contamination in Surficial Deposits (ug.l) and Number pol Ground-Water Samples	Twdr Ceology	Domestic Wells Within 600 m Production Wells (Depth, Production well) Production well)	Stimulation Record Reviewed by WOGCC (2014)	Z Adequate Site Assessment as Judged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	Well completed and P&A in 1964. Stimulation or production unlikely. Further investigation by WOGCC dependent on confirmation of nearby domestic well.
23X-24	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Well completed and P&A in 1964. Stimulation or production unlikely.
44-17	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	PGDW03 (137m,265m,SE) PGDW04 (134m,351m,SE) P120203.0W (137m,255m,W) P23056.0P (116m,255m,W)	No	NI	Yes	Well completed and P&A in 1964. Stimulation or production unlikely. No investigation recommended by WOGCC if no nearby domestic wells.
34-33	Invert	Yes ^U	No	?	0	Not sampled	0		0	Not sampled	?	None	No	NI	No	Well completed in 1964. P&A unknown. No information on stimulation or production.
33X-10	Invert	Yes ^U	Yes	Yes	?	Sample data not available	~560	1,000	0	Not sampled	Qa	PGDW14 (58m,224m,NW) PGDW23 (53m,172m,SE) (PGDW44 229m,102m,NW) P24508.0P (53m,365m,SE)	Yes	No	Yes	Acid stimulation and well completion in 1964. Hydraulic fracturing in 1965 with "salt waterflow to pit." P&A in 1983. Invert mud up to 10% oil. Production records from 1978. No produced water to 1983.
24X-3	Invert	Yes ^U	Yes	Yes	9	GRO: 9,200 (n=15) DRO: 3,300 (n=15) Benzene: 4.2 (n=15) Toluene: ND (n=15) Ethylbenzene: 110 (n=15) Total Xylenes: 750 (n=15) Naphthalene: 8.6 (n=11)	~1,000	1,000	11	GRO: 45,200 (n=38) DRO: 59,000 (n=38) Benzene: 1,960 (n=38) Toluene: 0.17 (n=38) Ethylbenzene: 950 (n=38) Xylenes: 4,200 (n=38) Naphthalene: 267 (n=10)	Qa	P66345.0W (21m,258m,NW)	No	VR₽	VRP	Well completed in 1965. Acid stimulation with solvent in 1966. No description of where flowback and other production fluids were disposed. Production records from 1978 with 9 bbls produced water in 1986 and increasing to 9,653 bbls after 1995. Invert mud up to 55% oil. Sundry notice for offsite disposal of production fluids in Jan 1998. Ground water monitoring ongoing. A remedial alternatives evaluation report is being drafted by Encana.
14-11	Invert	Yes ^u	Yes	?	12	GRO: 7,400 (n=13) DRO: 7,800 (n=13) Benzene: ND (n=4) Toluene: ND (n=4) Ethylbenzene: 5.1 (n=4) Total Xylenes: 5.1 (n=4) Naphthalene: 15 (n=6)	~940	1,000	8	GRO: 91,100 (n=79) DRO: 78,000 (n=79) Benzene: 476 (n=79) Toluene 15 (n=79) Ethylbenzene: 60 (n=79) Xylenes: 68 (n=79) Naphthalene: 486 (n=46)	Qa	PGDW46 (15m,119m,W) P31805.0W (31m,132m,SE) P69549.0W (31m,132m,SE) (Same well?)	No	VRP	VRP	Well completed in 1965. Well completion report and information on stimulation not available. Production records from 1978. No produced water until 2005 but sundry notice for offsite disposal of production fluids in Jan 1998. Remedial Agreement submitted to WOGCC entailing limited additional soil excavation and ground water monitoring by Encana.
13-13	"Chem Gel"	Yes ^U	Yes	Yes	0	Not sampled	0		0	Not sampled	?	None	No	NI	No	Well completed in 1966. P&A date unknown. Hydraulic fracturing with undiluted diesel fuel, 15% HCl, and 4% "salt water" in 1965. No description of where flowback and other production fluids were disposed.
31-15	Invert	Yes ^U	Yes	?	12	TPH: 70 (n=6) (Confirmation sample)	~1,500	5,500	0	Not sampled	Qa	PGDW11 (107m,230m,NE)	No	?	?	Well completed in 1968. Information on completion missing. Production records from 1978 with 8 bbls produced water in 1988 and increasing to 1,493 bbls after 2004. No description of where produced water was disposed. Sundry notice for offsite disposal of production fluids in Jan 1998. Recommendation of further investigation pending - no soil sample in area with highest PID reading (WOGCC 2015)
32-9	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	PGDW42 (61m,375m,NW)	Yes	NI	Yes	Well completion and P&A after in 1968. No apparent stimulation or production. Investigation recommended by WOGCC because of proximity to a domestic well.

Production Well Abbreviation	Drilling Mud Used Below Surface Casing	Pit Used or Likely Used to Dispose Drilling Mud and Cuttings Onsite	Pit Used or Likely Used for Disposal of Production Fluids?	Stimulated Prior to Jan 1995?	Number of Soil Screening Locations	Maximum Soil Contamination (mg/kg) and Number of Soil Samples	Exervation Volume (yd ³)	Ecxcavation Criterion (mg/kg TPH)	Number of Ground-Water Sampling Locations	Maximum Ground-Water Contamination in Surficial Deposits (µg/l) and Number of Ground-Water Samples	Surficial Geology	Domestic Wells Within 600 m of Production Wells (Depth, Distance, Direction from Production well)	Stimulation Record Reviewed by WOGCC (2014)	Adequate Site Assessment as Judged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	Comments
WEL	"Chem Gel"	Yes	Yes	Yes	8	GRO: ND (n=8) DRO: 390 (n=8) BTEX: not analyzed Naphthalene: 0.22 (n=1)	0	1,000	2	GRO: < 0.1 mg/l (n=2) DRO: 0.32 mg/l (n=2) BTEX: <1 - <5 μg/l (n=2) Naphthalene: <1 μg/l (n=2)	Qa	(79m,361m,SE) PGDW40 (67.1m,470m,NE)	Yes	Yes	No	Well completed in 1972. P&A in 1981. Acidized in Frontier formation with HCl and KCl solutions in 1971. Potential wellhead leak and discharge to "pits" discussed in memorandum in 1980. Encana (2015) stated that a pit could not be identified.
41X-10	Invert	Yes ^U	Yes	Yes	7	GRO: ND (n=1) DRO: ND (n=1) Sample data not in well file	0		2	GRO: ND (n=2) DRO: ND (n=2) BTEX: ND (n=2) Sample data not in well file	Qa	PGDW30 (79m,273m,N) PGDW49 (15m,335m,E)	Yes	No	Yes	Well completed in 1973. P&A in 1981. Invert mud contained up to 78% oil while drilling. In 1973 and 1979, hydraulic fracturing with KCl water, gelled KCl, solvents, surfactants, and N ₂ foam. No description of where flowback and production fluids were disposed. P&A due to parted casing and water production. No production record.
41X-2	Invert	Yes ^U	Yes	?	6	TPH: 1190 (n=2)	0	2,500	0	Not Sampled	Qa	None	No	Yes	No	Invert mud up to 76% oil. No documented stimulation or gas production. Sundry notice for offsite disposal of production fluids in Jan 1998.
31X-3	Invert	Yes ^U	Yes	?	17	GRO: 66 (n=24) DRO: 1200 (n=24) Benzene: ND (n=18) Toluene: ND (n=18) Ethylbenzene: ND (n=18) Xylenes: ND (n=18) Naphthalene: 0.34 (n=1)	~4,392	1,000	5	GRO: 300 (n=5) DRO: 2,700 (n=5) Benzene: ND (n=5) Toluene: ND (n=5) Ethylbenzene: 2.4 (n=5) Xylenes: ND (n=5) Naphthalene: ND (n=1)	Qa	P197335.0W (?,301m,NW) P197336.0W (?,304m,NW)	No	Yes	No	Well completed in 1973. No documented stimulation until 2001. Production record from 1983 with 29 bbb in 1986 and 1987. No description of where produced water was disposed. Increased to 1,215 bbls after 2004. Sundry notice for offsite disposal of production fluids in Jan 1998.
42X-11	Invert	Yes ^U	Yes	?	8	GRO: 580 (n=11) DRO: 450 (n=11) Benzene: ND (n=11) Ethylbenzene: 0.52 (n=11) Toluene: ND (n=11) Xylenes: 1.1 (n=11) Naphthalene: 0.58 (n=2)	~900	1,000	7	GRO: 50,000 (n= 59) DRO: 31,000 (n=59) Benzene: 240 (n=55) Toluene: 240 (n=55) Ethylbenzene: 240 (n=55) Xylenes: 620 (n=55) Naphthalene: 236 (n=32)	Qa	None	No	VRP	VRP	Well completed in 1974. No documented stimulation but completion record not reviewed by WOGCC (2014). Production record from 1983 with 9 bbls produced water in 1986. No description of where produced water was disposed. Increased to 222 bbls after 2004. Sundry notice for offsite disposal of production fluids in Jan 1998. Encana evaluating alternatives for final remedy and ground water monitoring.
42X-12	Invert	Yes ^U	Yes	Yes	5	GRO: ND (n=5) DRO: 1,100 (n=5) BTEX: ND (n=1)	~280	2,500	0	Not sampled	Qa	None	No	Yes	No	Completed in 1974. Acid stimulation in 1974. No description of where flowback and production fluids were disposed. Production record from 1983. No produced water until 2004 after which 295 bbls produced. Sundry notice for offsite disposal of production fluids in Jan 1998.
31X-14	Invert	Yes ^U	Yes	?	6	TPH: ND (n=5) (confirmation sample)	~260	2,500	0	Not sampled	Qa	PGDW34 (31m,518m,S) P44255.0W (69m,148m,N) P41320.0W (31m,148m,N) P99671.0W (17m,148,N)	No	?	?	Well completion in 1974. No documented stimulation. Production records from 1983 with 6,546 bbls water in Feb 1985, 4 bbls in 1986 and 4 bbls in 1988. No description of where produced water was disposed. After 2007, 7,691 cumulative bbls water. Sundry notice for offsite disposal of production fluids in Jan 1998. Further investigation recommend by WOGCC pending review of pre-excavation samples.
CCD	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	Converted to 9441.0P (177m,45m,W)	No	NI	No	Well completion and P&A after completion in 1974. Stimulation or production unlikely. No evidence of converted well sampled.
TR1-22	Invert	Yes ^U	Yes	Yes	0	Not sampled	0		0	Not sampled	Qa	PGDW48 (116m,397m,NW) PGDW35 (88m,449m,NW)	No	NI	Yes	Well completion in 1976. Acid stimulation and hydraulic fracturing in 1980. No description of where flowback and production fluids were disposed. P&A 1986. Well production file starts in 1978 with 5,281 bbls produced water between 1978 and 1986
1-21	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Well completion and P&A in 1976. Stimulation or production unlikely. Investigation recommended by WOGCC pending confirmation of nearby domestic wells. No evidence of former well pad – no further investigation recommended (Encana 2015)

Production Well Abbreviation	Drilling Mud Used Below Surface Casing	Pit Used or Likely Used to Dispose Drilling Mud and Cuttings Onsite	Pit Used or Likely Used for Disposal of Production Fluids?	Stimulated Prior to Jan 1995?	Number of Soil Screening Locations	Maximum Soil Contamination (ng/kg) and Number of Soil Samples	Excavation Volume (y.d ²)	Ecxeavation Criterion mg/kg TPH)	Number of Ground-Water Sampling Locations	Maximum Ground-Water Contamination in Surficial Deposits (ugl) and Number of Ground-Water Samples	Surficial Geology	Domestic Wells Within 600 m of Production Wells (Depth, Distance, Direction from Production well)	Stimulation Record Reviewed by WOGCC (2014)	Adequate Site Assessment as Indged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	Comments
TP I	Invert	Yes ^U	Yes	?	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Well completion in 1976. P&A date unknown. No record of stimulation. Well production file starts in 1978 with 5,607 bbls produced water from 1978 to 1980. No description of where produced water was disposed.
1-31	Invert	Yes ^U	Yes	?	0	Not sampled	0		0	Not sampled	?	PGDW06 (116m,341m,SE) PGDW12 (116m,491m,NW)	No	NI	No	Well completion in 1976. P&A in 1977. Well completion report not available.
TU 1	Invert	Yes ^u	Yes	?	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Completed in 1976. P&A in 1982. No record of stimulation but completion record not reviewed by WOGCC (2014). Well production file starts in 1978 with 220 bbls produced water from 1978 to 1982. No description of where produced water was disposed. Encana (2015) states that there is no evidence of former well pad.
4-8	Invert	Yes ^U	Yes	Yes	6	GRO: ND (n=6) DRO: 32 (n=6) Naphthalene: 5.3 (n=3)	0	1,000	2	GRO: 5,200 (n=2) DRO: 13,000 (n=2) Benzene: 110 (n=2) Toluene: 250 (n=2) Ethylbenzene: 240 (n=2) Xylenes: 1,200 (n=2) Naphthalene: 72 (n=2)	Qa	PGDW41 (21m,421m,SE) P66345.0W (21m,407m,SE)	Yes	VRP	VRP	Well completed in Mar 1977. Hydraulic fracturing in 1977 with "gel water" and N ₂ . No description of where flowback and production fluids were disposed. Production file starts in Jan 1978 with 36,978 bbls water from Jan 1978 to Dec 1993. No description of where produced water was disposed. Encana (2015) drafting report for site closure.
34-13	Invert	Yes ^U	Yes	?	0	Not sampled	0		0	Not sampled	?	P197335.0W (?,632m,SE) P197336.0W (?,626m,SE)	No	NI	No	Well completion in 1977. P&A date unknown. Well production file starts in 1978 with 290 bbls produced water from 1978 to 1979. No description of where produced water was disposed.
T24-11	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Twdr	None	No	NI	No	Well completed and P&A in 1978. Stimulation or production unlikely.
24-4	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Well completed and P&A in 1978. Stimulation or production unlikely.
44-15	Invert	Yes ^U	Yes	Yes	6	TPH: 486 (n=1)	0	5,500	0	Not sampled	Qa	PGDW48 (116m,329m,SW) PGDW35 (88m,374m,W) P108128.0W (116m,115m,W) P146856.0W (116m,115m,W)	No	No	Yes	Well completed in 1978. Acid stimulation in 1976 and 1978 with HCl and KCl solutions. No description of where flowback and production fluids were disposed. Production file starts in 1983. No produced water production from 1983 to 2005. Sundry notice for offsite disposal of production fluids in Jan 1998.
21-11	Invert	Yes ^U	Yes	Yes	?	Sample results not available in pit report (WOGCC 2015) or online.	~100	1,000	?	Sample results not available in pit report (WOGCC 2015) or online.	Qa	PGDW26 (20m,229m,W)	No	VRP	VRP	Well completed 1n 1979. Acid stimulation in 1979 with HCl solution and additives. Hydraulic fracturing in 1979 with the YEAPSD' fluid. No description of where flowback and production fluids were disposed. Production file starts in 1983. No produced water until 2005. Sundry notice for offsite disposal of production fluids in Jan 1998. Soil and ground water sampling data not available. Ground water and additional soil data were collected in October 2014. Encana (2015) is preparing a Supplemental Site Characterization report to recommend site closure.

Production Well Abbreviation	Drilling Mud Used Below Surface Casing	Pit Used or Likely Used to Dispose Drilling Mud and Cuttings Onsite	Pit Used or Likely Used for Disposal of Production Fluids?	Stimulated Prior to Jan 1995?	Number of Soil Screening Locations	Maximum Soil Contamination (mg/kg) and Number of Soil Samples	Excavation Volume (yd²)	Ecxcavation Criterion (mgkg TPH)	Number of Ground-Water Sampling Locations	Maximum Ground-Water Contamination in Surficial Deposits (tigil) and Number of Ground-Water Samples	Surficial Geology	Domestic Wells Within 600 m of Production Wells (Depth, Distance, Direction from Production well)	Stimulation Record Reviewed by WOGCC (2014)	Adequate Site Assessment as Judged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	Comments
12-13	Invert	Yes ^U	Yes	Yes	4	GRO: ND (n=4) DRO: ND (n=4) BTEX: ND (n=1)	0	1,000	0	Not sampled	Qa	PGDW32 (206m,173m,NE) PGDW33 (9m,134m,S) P22662.0P (9m,135m, S) P22660.0P (53m,280m,N)	Yes	No	Yes	Well completed in 1979. Acid stimulation with HCl and KCl solution in 1979. Hydraulic fracturing with "versa gel" in 1981. No description of where flowback and production fluids were disposed. P&A in 2001. Production records from 1983 with 18 bbls produced water between1986-1989. No description of where produced water was disposed. Stundry notice for offsite disposal of production fluids in Jan 1998.
41-9	Invert	Yes ^U	Yes	Yes	13	TPH: 3700 (n=8)	~1,200	4,000	0	Not sampled	Qa	PGDW43 (?,176m,NW)	No	No	Yes	Well completion in 1979. Acid stimulationwith HCl, KCl solution and additives in 1979 "flowed to pit." No produced water production until 1999 after which 15,593 bbls produced most of which was after recompletion in 2004. Sundry notice for offsite disposal of production fluids in Jan 1998.
TU 2	Invert	Yes ^U	Yes	Yes	0	Not sampled	0		0	Not sampled	Qa	P24502.0P (55m,466m.NE)	No	NI	No	Well completion, acid stimulation, and P&A in 1979. No description of where flowback was disposed.
22-10	Invert	Yes ^U	Yes	Yes	6	TPH: 201 (n=1)	0	7,000	0	Not sampled	Qa	PGDW14 (58m,399m,E) PGDW44 (229m,508m,E)	Yes	No	Yes	Well completion in 1979. Acid stimulation using HCl and KCl solutions with additives in 1979. "Flowed to pit." Production record from 1983. No produced water until after recompletion in 2005. Sundry notice for offsite disposal of production fluids in Jan 1998.
G1	invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled		PGDW15 (31m,469m,NE) PGDW13 (?,488m,NW)	No	NI	No	Well completion and P&A in 1979. Stimulation or production unlikely.
21-15	Invert	Yes ^U	Yes	Yes	7	GRO: 76 (n=1) DRO: 401 (n=1)	0	8,500	0	Not sampled	Twdr	PGDW47 (148m,350m,N) P120049.0W (148m,384m,N)	Yes	?	?	Well completion in 1979. Acid stimulation with additives in 1979 and 1982. "Filw' d to pit" Hydraulic fracturing with "Y-F4PSD" "Flow to pit" in 1979. In letter to BLM dated 8/14/2012 concerning of 1,000 gallons of a 15% HCl solution in "compromised" casing between 735 to 1,105 feet below ground surface. Production records from 1983. No produced water until 2008. Sundry notice for offsite disposal of production fluids in Jan 1998. Further investigation dependent upon consideration of domestic wells.
44-10	Invert	Yes ^U	Yes	Yes	10	TPH: 2920 (n=6)	~60	5,500	0	Not sampled	Qa	PGDW23 (53m,253m,N) PGDW11 (107m,388m, S) P200885.0W (7,199m, E) P24508.0P (53m,306m, N)	No	No	Yes	Invert mud 15-20% water. Well completed in 1979. Acid stimulation in 1979. "Flowing to pit avg 4 bpmbled well to pit" Production records from 1983 with 10 bbls water in 1986. No description of where produced water was disposed. Sundry notice for offsite disposal of production fluids in Jan 1998.
22-12	Invert	Yes ^U	Yes	Yes	8	GRO: 120 (n=9) DRO 850 (n=9) BTEX: ND (n=1)	~40-60	1,000	5	GRO: 2,900 (n=5) DRO: 3,500 (n=5) Benzene: ND (n=5) Toluene: ND (n=5) Ethylbenzene: 120 (n=5) Xylenes: 610 (n=5)	Qa	PGDW20 (140m,172m, SE) LD02 (186m,172m, SE)	Yes	VRP	VRP	Well completion 1980. In 1979 and 1980, acid stimulation with HCl solution and additives. In 1980, hydraulic fracturing with "Titan III-30 gel" and B-11 gel breaker" flushed with 2% KCl solution. No description of where flowback and production fluids were disposed. No produced water until 1995 after which 288 bbls produced. No description of where produced water was disposed. Sundry notice for offsite disposal of production fluids in Jan 1998. Encana (2015) continuing ground water monitoring.
11-14	Invert	Yes ^U	Yes	Yes	5	TPH: 16 (n=5)	0	4,000	0	Not sampled	Qa	P29496.0P (40m,164m, E) P91293.0W (3m,254m, W)	No	No	Yes	Well completion in 1980. Acid stimulation in 1980. No description of where flowback and production fluids were disposed. Production record from 1983. No produced water until 2004 after which 12,722 bbls water produced. Sundry notice for offsite disposal of production fluids in Jan 1998.
16-28	KCl Polymer	Yes ^U	No	?	0	Not sampled	0		0	Not sampled	?	None	No	NI	No	Well completion in 1980. P&A date unknown. Well completion report not available.

Production Well Abbreviation	Drilling Mud Used Below Surface Cashig	Pit Used or Likely Used to Dispose Drilling Mud and Cuttings Onsite	Pit Used or Likely Used for Disposal of Production Fluids?	Stimulated Prior to Jan 1995?	Number of Soil Screening Locations	Maximum Soil Contamination (mg/kg) and Number of Soil Samples	Exeavation Volume (y d³)	Ecxcavation Criterion (mg/kg TPH)	Number of Ground-Water Sampling Locations	Maximum Ground-Water Confamination in Surficial Deposits (µg/l) and Number of Ground-Water Samples	Surficial Geology	Spomestic Wells Within 600 m of Production Wells (Depth, Distance, Direction from Production well)	Stimulation Record Reviewed by WOGCC (2014)	Adequate Site Assessment as Judged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	Comments
F 1-17	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	(26m,404m,W) P65111.0W (27m,404m,W)	No	NI	Yes	Well completion and P&A in 1980. Stimulation or production unlikely. Recommendation pending confirmation of presence of nearby domestic wells (WOGCC 2015).
14-2	Invert	Yes ^U	Yes	Yes	?	Sample results not in pit report (WOGCC 2015) nor posted online.	~50	1,000	?	Sample results not in pit report (WOGCC 2015) nor posted online.	Qa	PGDW05 (64m,299m,SE) PGDW45 (31m,272m,SE) PGDW40 (67m,357m,NW)	Yes	VRP	VRP	Well completion in 1981. On 1/18/1981, "operator noticed large gas flow from SI wellflow was from partially opened valve on 8 5/8 x 5 ½ in annuluskid line to pit + started flowing to pitCirc 180 bblsgel salt waterin annuluscirc fluid to pitlop of cmt very poor." Acid stimulation in 1981 using HCl and KCl solutions. On 3/11/1981, "well flowing to pitapprox. 500 bbls wtr." On 3/26/1981 "reversed acid to pit." Hydraulic fracturing in 1981 using "YF4PSD, gelled water, J-347 gelling agent, J-218 breaker, J-218 breaker, J-318 breaker aid" and other additives. "Swabbed to pit" On 4/6/1981. "Well producing approx. 75 bbls wtr per daywell died to wtr build up." On 2/23/1983, surface damages paid for "inverted mud blow out" on 1/18/1981 and "condensate blow out" in Oct 1982. No produced water documented until 2005. Sundry notice for offsite disposal of production fluids in Jan 1998. Pit was reinstated into the VRP program in July 2014. Soil borings and groundwater monitoring wells installed in October 2014. Encana is drafting a report recommending site closure.
1-8-1B	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Twdr	None	No	NI	No	Well completion and P&A in 1981. Well completion report not available. Stimulation or production unlikely.
21-9	Invert	Yes ^U	Yes	Yes	47	GRO: 700 (n=67) DRO: 39,000 (n=67) Benzene: ND (n=49) Toluene: 0.094 (n=47) Ethylbenzene: 2.4 (n=47) Xylenes: 20 (n=47)	~8,522	1,000	4	GRO: ND (n=4) DRO: 880 (n=4) BTEX: ND (n=4)	Qa	PGDW42 (61m,237m,SE)		Yes	No	Well completion in 1981. Acid stimulation in 1981. Hydraulic fracturing in 1981 using "gelled water." P&A in 1992. 11 bbls produced water in 1986. No description of where flowback and production fluids were disposed.
12-3	Invert	Yes ^U	Yes	Yes	5	TPH: 161 (n=5)	0	5,000	0	Not sampled	Qa	P66345.0W (21m,327m,S) PGDW41 (21m,524m,SW)	No	?	?	Acid stimulation in 1981. No description of where flowback and production fluids were disposed. Sundry notice for offsite disposal of production fluids in Jan 1998. No produced water until 2005 after which 1,270 bbls produced. Incorrect site photo and borehole logs in investigative report. Recommendation for additional investigation will be based upon file review.
RH I	Invert	Yes ^U	No	No	0	Not sampled	0		0	Not sampled	Qa	PGDW03 (137m,382m,SE) PGDW04 (134m,521m,SE) P120203.0W (137m,377m,S) P23056.0P (116m,377m,S)	No	NI	Yes	Well completion and P&A in 1981. Well completion report not available. Stimulation or production unlikely.
1-4	Invert	Yes ^U	Yes	Yes	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Acid stimulation and hydraulic fracturing during well completion in 1982. No description of where flowback and production fluids were disposed. Also, 2,867 bbls produced water by Jan 1993 and 4,124 bbls produced water by Jan 1998. No description of where produced water was disposed.
14-24	KCl Polymer	Yes ^U	Yes	Yes	0	Not sampled	0		0	Not sampled	Twdr	None755m,SW)	No	NI	No	Well completion and P&A in 1982. Acid stimulation in 1982. No description of where flowback and production fluids were disposed.

Production Well Abbreviation	Drilling Mud Used Below Surface Casing	Pit Used or Likely Used to Dispose Drilling Mud and Cuttings Onsite	Pit Used or Likely Used for Disposal of Production Fluids?	Stimulated Prior to Jan 1995?	Number of Soil Screening Locations	Maximum Soil Contamination (mg/kg) and Number of Soil Samples	Excavation Volume (yd²)	Ecxeavation Criterion (mg/kg TPH)	Number of Ground-Water Sampling Locations	Maximum Ground-Water Contamination in Surficial Deposits (tagl) and Number of Ground-Water Samples	Surficial Geology	Domestic Wells Within 600 m of Production Wells (Depth, Distance, Direction from Production well)	Stimulation Record Reviewed by WOGCC (2014)	Adequate Site Assessment as Judged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	Comments
A-1	Invert	Yes ^U	Yes	Yes	0	Not sampled	0		0	Not sampled	?	None	No	NI	No	Well completed in 1983. Acid stimulation and hydraulic fracturing in 1983. No description of where flowback and production fluids were disposed. Also, 7,072 bbls produced water from 1991 to 1995. No description of where produced water was disposed.
1-15	Invert	Yes ^U	Yes	Yes	0	Not sampled	0		0	Not sampled	Qa	None	No	NI	No	Well completion 1983. Acid stimulation and hydraulic fracturing with KCl solution and "gel water" in Cody Formation in 1983. P&A in 1990. 19 bbls produced water in 1983. No description of where flowback, produced water, and other production fluids were disposed
B-1	Invert	Yes ^U	Yes	Yes	0	Not sampled	0		0	Not sampled	?	None	No	NI	No	Well completion and P&A in 1984. Acid stimulation in 1984 with HCl and HF solutions. Hydraulic fracturing in 1984 with undiluted diesel fuel. No description of where flowback was disposed.
33-11	KCl polymer	Yes ^L	No	Yes	0	Multiple locations ^w	0		0	Not sampled	Qa	Not evaluated	No	NI	No	Well completion in 1993. Drilling mud samples up 27,000 mg/l Cl. Acid stimulation in 1993. Hydraulic fracturing in 1993 using CO ₂ foam. 1,442 bbls produced water by Jan 1998. No description of where flowback, produced water, and other potential production fluids were disposed. Sundry notice for offsite disposal of production fluids in Jan 1998. Encana states that cuttings were buried at offsite location north of a rock out crop near Tribal Pavillion 42X-11. A nearby monitoring well 5 showed no indication of contamination.
12-11	KCl polymer	Yes ^L	No	Yes	0	Multiple locations ^W	0		0	Not sampled	Qa	Not evaluated	Yes	NI	No	Well completion in 1993. Drilling mud up to 22,000 mg/l Cl. Hydraulic fracturing with CO ₂ foam and KCl solution in 1993. No description of where flowback was disposed. No produced water until recompletion in 2004. Sundry notice for offsite disposal of production fluids in Jan 1998. Investigation recommended by WOGCC at one pit containing KCl polymer.
11-10	KCl polymer	Yes ^L	No	No	0	Multiple locations ^W	0		0	Not sampled	Qa	Not evaluated	No	NI	No	Well completion in 1993. No apparent stimulation prior to recompletion in 2004. 5,508 bbl produced water from Jan 1994. Pan 1998. No description of where produced water was disposed. Sundry notice for offsite disposal of production fluids in Jan 1998. Encana states that although a concrete pad is at this location, there is no documentation that it was used.
42-10	KCl polymer	Yes ^L	No	Yes	0	Multiple locations ^W	0		0	Not sampled	Qa	Not evaluated	Yes	NI	No	Well completion in 1994. Acid stimulation in 1994. 3,025 bbl produced water from Jan 1994 – Jan 1998. No description of where flowback and produced water were disposed. Sundry notice for offsite disposal of production fluids in Jan 1998. Investigation recommended by WOGCC at one pit containing KCl polymer.
31-10	KCl polymer	Yes ^C	No	Yes	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	Yes	NI	No	Well completion in 1994. Acid stimulation in 1994. 3,850 bbls produced water from Jan 1994 – Jan 1998. No description of where flowback and produced water were disposed. Sundry notice for offsite disposal of production fluids in Jan 1998.

n Well ion	and Used Below	d or Likely Used to Drilling Mud and 38 Onsite	or Likely Used for of Production	itimulated Prior to Jan 995?	of Soil Screening	m Soil instion (mg/kg) and of Soil Samples	xeavation Volume (yd³)	Ecxesvation Criterion mg/kg TPH)	of Ground-Water g Locations	Maximum Ground-Water Contamination in Surficial Deposits (ngfl) and Number of Ground-Water Samples	Seology	Domestic Wels Within 600 m of Production Wels (Depth, Distance, Direction from Production well)	in Record by WOGCC (2014)	Adequate Site Assessment as Judged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	
Production We Abbre viation	Drilling Mud Us Surface Casing	Pit Used or Likel Dispose Drilling Cuffings Onsite	Pit Used o Disposal o Fluids?	imulate 195?	umber o	Maximum S Contaminal Number of	vcavatio	excavafi ng/kg Ti	umber of ampling l	laximum ontamin eposits (Ground	urficial Geology	omestic Produc istance, roductio	Stimulation R Reviewed by A	dequate rdged by	urther I ecomme 015)	
23-10	KCl polymer	Yes ^L	No	Yes	0	Multiple locations ^w	0	98	0	Not sampled	Twdr	Not evaluated	Yes	NI	No	Well completion in 1994. Acid stimulation and hydraulic fracturing with N ₂ foam in 1994. No description of where flowback was disposed. 23,700 bbls produced water from Jan 1994 – Jan 1998. Sundry notice dated 4/27/1995 requesting approval to store produced water in a 210 bbl steel tank for offsite disposal. Sundry notice for offsite disposal of prod fluids in Jan 1998. Investigation recommended by WOGCC at one pit containing KCl polymer
43-10	KCl polymer	Yes ^L	No	Yes	0	Multiple locations ^w	0		0	Not sampled	Qa	Not evaluated	Yes	NI	No	Well completion in 1994. Mud pit sample 9,500 mg/l Cl. Acid stimulation and hydraulic fracturing using N ₂ foam in 1994. 85 bbls produced water in 1995. No description of where flowback and produced water were disposed. Sundry notice for offsite disposal of production fluids in Jan 1998. Part of cuttings pit exposed due to movement of landowner road.
33-2	KCl polymer	Yes ^C	No	Yes	0	Multiple locations ^w	0		0	Not sampled	?	Not evaluated	No	NI	No	Acid stimulation in 1994. 269 bbl produced water Jan 1994 – Jan 1998. No description of where flowback and produced water was disposed. Sundry notice for offsite disposal of production fluids in Jan 1998.
23-1	KCl polymer	Yes ^L	No	Yes	0	Multiple locations ^w	0		0	Not sampled	Twdr	Not evaluated	No	NI	No	Mud pit sample 36,360 mg/l Cl. Acid stimulation in 1994. 200 bbl produced water from Jan 1994—Jan 1998. Sundry notice dated 4/27/1995 to store produced water in 70 bbl steel tank for offsite disposal. Sundry notice for offsite disposal of production fluids in Jan 1998 – unclear how production fluids were disposed of prior to this date. Investigation recommended by WOGCC at one pit containing KCl polymer
41-15	KCl Polymer	Yes ^c	No	Yes	0	Multiple locations ^w	0		0	Not sampled	?	Not evaluated	No	NI	No	Mud pit sample 35,150 mg/l Cl. Acid stimulation and hydraulic fracturing using N ₂ foam in 1994. "Let well open to test tank" Sundry notice for offsite disposal of production fluids in Jan 1998 – unclear how production fluids were disposed of prior to this date. Completion record not reviewed by WOGCC (2014).
43-6	KCl Polymer	?	No	Yes	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	No	NI	No	Acid stimulation in 1995. No produced water until 2008. Sundry notice for offsite disposal of production fluids in Jan 1998 – unclear how production fluids were disposed of prior to this date.
23-11 31-11X	KCl polymer KCl polymer	No	No No	NA No	NA 0	NA Multiple locations ^w	NA 0		NA 0	NA Not sampled	NA	NA Not evaluated	NA NA	NA NI	NA No	NA No well site disposal of production fluids.
13X-3	PHPA/LSND	No	No	NA NA	NA	NA NA	NA	+	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA
42X-9	LSND	Yes ^L	No	No	0	Multiple locations ^W	0	1	0	Not sampled	Oa	Not evaluated	NA NA	NI	No	No well site disposal of production fluids.
41-11	LSND	No	No	NA	NA	NA NA	NA	t -	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
33-10	PHPA/LSND	?	No	No	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	NA	NI	No	No well site disposal of production fluids.
33-3	PHPA	Yes ^L	No	No	0	Multiple locations ^w	0		0	Not sampled	Qa	Not evaluated	NA	NI	No	No well site disposal of production fluids.
44-3	PHPA/LSND	Yes ^L	No	No	0	Multiple locations ^w	0		0	Not sampled	Qa	Not evaluated	NA	NI	No	No well site disposal of production fluids.
15-21X	Invert	?	No	No	0	Not sampled	0		0	Not sampled	Qa	Not evaluated	NA	NI	No	No well site disposal of production fluids. Disposal of "solidified" invert mud and cuttings unknown. Encara states that cuttings were "solidified"
32-10	LSND	Yes ^L	No	No	0	Multiple locations ^w	0		0	Not sampled	Qa	Not evaluated	NA	NI	No	No well site disposal of production fluids.
13-11	PHPA	Yes ^C	No	No	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	NA	NI	No	No well site disposal of production fluids.
21-13	DeepDrill®	Yes ^C	No	No	0	Multiple locations ^w	0		0	Not sampled	?	Not evaluated	NA	NI	No	No well site disposal of production fluids.
43-2	Unknown ^R	Yes ^C	No	No	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	NA	NI	No	No well site disposal of production fluids.
13-2	DeepDrill®	Yes ^C	No	No	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	NA	NI	No	No well site disposal of production fluids.
24-1	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
32-1	LSND	Yes ^L	No	No	0	Multiple locations ^W	0		0	Not sampled	Twdr	Not evaluated	NA	NI	No	No well site disposal of production fluids.
34-2	LSND	Yes ^C	No	No	0	Multiple locations ^W	0	ļ	0	Not sampled	?	Not evaluated	NA	NI	No	No well site disposal of production fluids.
12-6	DeepDrill	?	No	No	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	NA	NI	No	No well site disposal of production fluids.
44-1	LSND	Yes ^L	No	No	0	Multiple locations ^W	0	-	0	Not sampled	Twdr	Not evaluated	NA	NI	No	No well site disposal of production fluids.
14-10	DeepDrill®	?	No	No	0	Multiple locations ^w	0		0	Not sampled	7	Not evaluated	NA	NI	No	No well site disposal of production fluids.

			L			pwe				_ 1.		E ú	1 =	sa C	Ú	
	Below	ty Used to Mud and	ed fo	=	of Soil Screening	cs cs	£	1_	Ground-Water ocations	Maximum Ground-Water Contamination in Surficial Deposits (µg/l) and Number of Ground-Water Samples		Domestic Wells Within 600 m of Production Wells (Depth, Distance, Direction from Production well)	Stimulation Record Reviewed by WOGCC (2014	Adequate Site Assessment : hudged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	
	Be	3 1	Pit Used or Likely Used Disposal of Production Fluids?	o Jan	reer	(mg/kg) a Samples	xeavation Volume (yd²)	Criterion	1 ž 2	Maria Sena		<u># 5</u> 4	١ۦ٢	FO	l io	
=	Used	e B G	ety duc	or t	Sel	<u>8</u>	l <u>B</u>	1 2	₩ .	in in it is a second of the initial	Ē.	F in Section 1	Record y WOGO	\$8	by (g	
Production Well Abbreviation	Mud U	Pit Used or Likely Dispose Drilling N Curtings Onsite	Lik Pro	Stimulated Prior to. 1995?	Soil	Maximum Soil Contamination (mg/ Number of Soil Sam	\ \rac{1}{2}	o e	umber of Ground ampling Locations	Gro Hom Wai	urficial Geology	on /	1 % 5	% ≓e	ded fee	
E ij	Drilling Mud Surface Casir	<u>\$</u>	l of	per	e of		ioi	Ecxcavation (mg/kg TPH)	Jo T	(世間) (世間)	<u>5</u>	5 ± 0 m	Stimulation Reviewed by	e S	<u> </u>	1
Tevi	Drilling Surface	ing se	Sec osa ds?	1 E 5:	umber o		N Y	kg 'g	umber amplin	Tall man selection of the selection of t	icia	E E E E	la la	E pa	S mer	ommedia de la constanta de la
Pro de	E 1		THE THE	14.6	000	N S S S S S S S S S S S S S S S S S S S	Exc.	l ge R		Max Son of G	l j	E	# ž	き買	2 g ii	100
13-15	PHPA	Yes ^C	No	No	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	NA	Yes ^C	No	No well site disposal of production fluids.
12-11W	LSND	?	No	No	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	NA	?	No	No well site disposal of production fluids.
34-3R 11-11	PHPA	Yes ^C	No	No No	0	Multiple locations ^W	0	<u> </u>	0	Not sampled	?	Not evaluated	NA	Yes ^C	No	No well site disposal of production fluids.
12-5	PHPA PHPA	Yes ^C	No No	No	0	Multiple locations ^W Multiple locations ^W	0	 	0	Not sampled Not sampled	2	Not evaluated Not evaluated	NA NA	Yes ^C	No No	No well site disposal of production fluids. No well site disposal of production fluids.
13-12	LSND	Yes ^C	No	No	0	Multiple locations ^W	0	 	0	Not sampled	?	Not evaluated Not evaluated	NA	Yes ^C	No	No well site disposal of production fluids.
34-11	"gel"	Yes ^C	No	No	0	Multiple locations ^W	0	<u> </u>	0	Not sampled	?	Not evaluated	NA	Yes ^c	No	No well site disposal of production fluids.
13-1	LSND	Yes ^L	No	No	0	Multiple locations ^w	0		0	Not sampled	Twdr	Not evaluated	NA	?	No	No well site disposal of production fluids.
11-12	LSND	Yes ^C	No	No	0	Multiple locations ^W	0	<u> </u>	0	Not sampled	?	Not evaluated	NA	Yesc	No	No well site disposal of production fluids.
21-10 43-1	LSND PHPA	Yes ^C Yes ^L	No	No No	0	Multiple locations ^W	0	<u> </u>	0	Not sampled	? Twdr	Not evaluated	NA NA	Yes ^C	No No	No well site disposal of production fluids.
33-1	LSND	Yes ^L	No No	No	0	Multiple locations ^W Multiple locations ^W	0	<u> </u>	0	Not sampled Not sampled	Twdr	Not evaluated Not evaluated	NA NA	2	No No	No well site disposal of production fluids. No well site disposal of production fluids.
12-7	LSND	Yes ^C	No	No	0	Multiple locations ^W	0	<u> </u>	0	Not sampled	?	Not evaluated	NA	Yes ^C	No	No well site disposal of production fluids.
21-10W	LSND	NoD	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
23-12	LSND	Yes ^C	No	No	0	Multiple locations ^W	0		0	Not sampled	?	Not evaluated	NA	Yes ^C	No	No well site disposal of production fluids.
44-2	?	?	No	No	0	Multiple locations ^W	0	L	0	Not sampled	?	Not evaluated	NA	?	No	No well site disposal of production fluids.
31-9	LSND	Yes ^L	No	No	3	GRO: ND(0.5) (n=3) DRO: ND(4) (n=3)	0	1,000	0	Not sampled	Qa	Not evaluated	NA	?	No	No well site disposal of production fluids.
						SVOC: ND (n=1)		1								
34-10	LSND	Yes ^L	No	No	0	Multiple locations ^W	0		0	Not sampled	Twdr	PGDW11 (107m,436m,SE)	NA	?	No	Lozier pit disposal area. No well site disposal of production fluid.
34-1	LSND	Yes ^L	No	No	0	Multiple locations ^W	0		0	Not sampled	Qa	Not evaluated	NA	?	No	No well site disposal of production fluids.
21-12	LSND	Yes ^L	No	No	0	Multiple locations ^W	0		0	Not sampled	Qa	Not evaluated	NA	?	No	No well site disposal of production fluids.
12-10	LSND	Yes ^C	No	No	0	Multiple locations ^W	0	<u> </u>	0	Not sampled	?	Not evaluated	NA	Yes ^C	No	No well site disposal of production fluids.
12-1 42-3	LSND LSND	Yes ^L Yes ^L	No No	No No	0	Multiple locations ^w Multiple locations ^w	0	<u> </u>	0	Not sampled Not sampled	Twdr Qa	Not evaluated Not evaluated	NA NA	2	No No	No well site disposal of production fluids. No well site disposal of production fluids.
22-1	LSND	Yes ^L	No	No	0	Multiple locations ^W	0	 	0	Not sampled	Twdr	Not evaluated Not evaluated	NA	9	No	No well site disposal of production fluids.
33-10W	LSND	No	No	NA	NA	NA NA	NA	<u> </u>	NA	NA	NA	NA	NA	NA	NA	NA
41-3	LSND	Yes ^L	No	No	0	Multiple locations ^W	0		0	Not sampled	Qa		NA	?	No	No well site disposal of production fluids.
22-11	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
43-11	LSND	No	No	NA	NA	NA	NA	<u> </u>	NA	NA	NA	NA	NA	NA	NA	NA
11-3 41-10	LSND LSND	No No ^D	No No	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
13-12W	PHPA	No	No	NA NA	NA NA	NA NA	NA NA	 	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
24-3B	LSND	No	No	NA	NA	NA	NA	 	NA	NA	NA	NA	NA	NA	NA	NA
11-11B	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
31-11	LSND	Yes ^C	No	No	0	Multiple locations ^W	0		0	Not sampled	?	?	NA	Yes ^C	No	No well site disposal of production fluids.
23-3	?	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
32-11 44-11	LSND LSND	No No	No No	NA NA	NA NA	NA NA	NA NA	 	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
44-11 42-9W	LSND	No No	No	NA NA	NA NA	NA NA	NA NA	 	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
32-9W	LSND	No	No	NA NA	NA	NA NA	NA NA	1	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA
32-10B	LSND	No ^D	No	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA
13-11B	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
14-03W	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
12-2 23-10W	LSND LSND	Yes ^L Yes ^L	No	No	0	Multiple locations ^W	0	<u> </u>	0	Not sampled	Qa T1	Not evaluated	NA NA	?	No No	No well site disposal of production fluids.
23-10W 23-10C	LSND	Yes ^L	No No	No No	0	Multiple locations ^W Multiple locations ^W	0	<u> </u>	0	Not sampled Not sampled	Twdr Twdr	Not evaluated Not evaluated	NA NA	?	No No	No well site disposal of production fluids. No well site disposal of production fluids.
34-3B	LSND	No No	No	NA NA	NA	NA NA	NA	 	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA
24-2	LSND	No	No	NA	NA	NA	NA	<u> </u>	NA	NA	NA	NA	NA	NA	NA	NA
23-10B	LSND	Yes ^L	No	No	0	Multiple locations ^W	0	<u> </u>	0	Not sampled	Twdr	Not evaluated	NA	?	No	No well site disposal of production fluids.
33-10B	LSND	Yes ^L	No	No	0	Multiple locations ^W	0		0	Not sampled	Twdr	Not evaluated	NA	?	No	No well site disposal of production fluids.
12-11B	LSND	No	No	NA	NA	NA	NA		NA	NA NA	NA	NA	NA	NA	NA	NA
43-10B 24-11	LSND LSND	Yes ^L No ^D	No No	No	0 NA	Multiple locations ^W	NA	-	0 NA	Not sampled	Qa NA	N/A	NA NA	? NA	No NA	No well site disposal of production fluids.
31-10B	LSND	No ^D	No	NA NA	NA NA	NA NA	NA NA	 	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
33-11B	"water based"	No	No	NA NA	NA NA	NA NA	NA NA	 	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
				1		l						1				

Production Well Abbreviation	Drilling Mud Used Below Surface Casing	Pit Used or Likely Used to Dispose Drilling Mud and Cuttings Onsite	Pit Used or Likely Used for Disposal of Production Fluids?	Stimulated Prior to Jan 1995?	Number of Soil Screening Locations	Maximum Soil Contamination (mg/kg) and Number of Soil Samples	Excavation Volume (yd²)	Ecxcavation Criterion (mg/kg TPH)	Number of Ground-Water Sampling Locations	Maximum Ground-Water Contamination in Surficial Deposits (uglt) and Number of Ground-Water Samples	Surficial Geology	Domestic Wells Within 600 m of Production Wells (Depth, Distance, Direction from Production well)	Stimulation Record Reviewed by WOGCC (2014)	Adequate Site Assessment as Judged by WOGCC (2015)	Further Investigation Recommended by WOGCC (2015)	Comments
44-11B	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
21-14	LSND	Yes ^L	No	No	0	Multiple locations ^W	0		0	Not sampled	Qa		NA	NI	No	No well site disposal of production fluids.
13-10	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
21-10B	"water based"	No ^D	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
43-11B	"water based"	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
42-10B	LSND	No ^D	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
22-11B	"water mud"	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
32-10C	LSND	No ^D	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
22-11C	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
44-4	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
12-12	"water based"	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
33-2C	LSND/PHPA	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
13-2B	?	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
43-4	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
33-2B	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
14-3B	DeepDrill®	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
41-11B	?	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
42-4B	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
21-11B	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
13-3W	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
41-10B	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
34-28	DeepDrill®	?	No	No	0	Multiple locations ^W	0		0	Not sampled	?		NA	NI	No	No well site disposal of production fluids.
32-3	LSND	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
43-9	DeepDrill®	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
22-3	"water based"	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
44-3C	?	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
32-2	"Gel-Chem"	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
33-12	"Gel-Chem"	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
14-21	KCL Polymer	Yes ^L	No	No	0	Multiple locations ^w	0		0	Not sampled	Twdr		NA	NI	No	Well completion in 2006. No well site disposal of production fluids. Investigation recommended by WOGCC at one pit containing KCl polymer
22-4	PHPA	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
42-15	PHPA	Yes ^L	No	No	0	Multiple locations ^W	0		0	Not sampled	Qa	?	NA		No	No well site disposal of production fluids.
41-26	Water based	No	No	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA

Abbreviations

? – Unknown

VRP - Voluntary Remediation Program

PHPA - partially hydrolized polyacrylamides

LSND - low solids non-dispersed drilling mud

DeepDrill® is a product of Newpark Drilling Fluids and is described as a buffered blend of polyhydroxyl alcohols. No MSDS on this product was provided to EPA

ND – non detect (reporting limit in report)

NI – not investigated

Qa - Quaternary Deposits

Twdr - Wind River Formation

n – number of samples

NA - not applicable

<u>Superscripts</u>

D - Cuttings disposed at pit near 34-10

C - Cuttings used for tank berms/tank battery or spread on surface at location

L - Pits lined after 1993.

U - Pits unlined prior to 1993.

W – Cuttings for water-based mud sampled by Encana at 40 production wells between 2001 and 2006. All samples analyzed for TPH with highest TPH value of 645 mg/kg. Two samples were analyzed for chloride (115 and 215 mg/kg). Data set not available.

Table SI F3. Summary of detection of light hydrocarbons and organic compounds in domestic wells less than and greater than 600 m from unlined pits. Concentrations in μ g/L unless otherwise indicated.

Well Name	Date	Methane	Ethane	Propane	GRO	DRO	DRO (SGCU)	Adamantane	1,3-Dimethyl Adamantane	Other Hydrocarbons and TICs .	References
	ells < 600 m 1	from unlined	pits potenti:	ally receiving	production fl	uids	1		1	1 9	
PGDW05	Mar-09	16.6	NA	NA	NA	105	NA	NA	NA		EPA ²⁹
	Jan-10	5.44(J)	<10.0	<15.0	26.3/31.1	75.3/76.4	NA	<0.20(J)/<0.20(J)	1.74(J)/1.71(J)	2-methyladamantane (TIC) - 2.5 μg/L	EPA ³⁰
	Apr-11	90(B)	66(B)	<6.7	42.8(B)	68.1(B)	NA	0.12(J)	1.35(J)	1,3-dimethyladamantane + isomers (TIC) – 8.6 μg/L	EPA ²⁷
	Apr-12	53(B)	<0.27	<3.8	48	63.5	NA	<0.25	2.82	2-methyladamantane (TIC) – 3.39 μg/L cis-1,4-dimethyladamantane (TIC) – 1.37 μg/L	EPA ³³
	Jun-14	33	ND	ND	ND	ND	26(J)	NA	NA	isopropanol – 8.1(J) μg/L	WYDEQ ³⁴
	Aug-14	72	ND	ND	ND	93(J)	31(J)	NA	NA		WYDEQ ³⁴
PGDW06	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW11	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW14	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
	Apr-11	23(B)	<4.8	<6.7	<20.0	<20.8	NA	< 0.10	< 0.10	- 	EPA ²⁷
	Jun-14	0.54(J)	ND	ND	ND	29(J)	ND	NA	NA	isopropanol – 6.0(J) μg/L naphthalene – 0.6(J) μg/L	WYDEQ ³⁴
	Aug-14	0.2(J)	ND	ND	ND	ND	ND	NA	NA		WYDEQ ³⁴
PGDW20	Mar-09	137	NA	NA	<20	17.3	NA	NA	NA		EDA 29
	Jan-10	172	10.9	<15.0	<20.0	21.7	NA	<0.20(J)	<0.20(J)	2-methyladamantane (TIC) - 0.49 μg/L	EPA ³⁰
	Oct-10	190(B)	20(B)	<4.1	<20.0/<20.0	<22.0	NA	1.35(J)/1.37(J)	0.14(J)/0.14(J)	2-methyladamantane (TIC) – 1.03/0.43 μg/L	EPA ²⁷
	Apr-11	137(B)	80(B)	<6.7	<20.0	<21.9	NA	< 0.10	< 0.10	1-isobutyladamantane (TIC) – 0.27 μg/L	EPA ²⁷
	Apr-12	111/108	8.0/7.0	<3.8/<3.8 <	20.0/<20.0	<20.0/<20.0	NA	<0.25	<0.25/<0.25	2-methyladamantane (TIC) – 1.03/0.43 μg/L 1-isobutyladamantane (TIC) – 0.27 μg/L 2-methyladamantane (TIC) – 0.67 μg/L	EPA ²⁷ EPA ²⁷ EPA ³³
	Jun-14	110	7	0.59(J)	ND	ND	ND	NA	NA	acetone – 1.8(J) μg/L	WYDEQ ³⁴
	Aug-14	130	8	0.24(J)	ND	43(J)	ND	NA	NA		WYDEQ ³⁴
PGDW20 (carbon trap)	Mar-09	NA	NA	NA	NA	377	NA	NA	NA		EPA ²⁹
PGDW20 (RO filter)	Jan-10	NA	NA	NA	NA	752,000 μg/kg	NA	420 μg/kg	2960 μg/kg	2-methyladamantane (TIC) – 9400 μg//kg	EPA ³⁰
LD-02	Oct-10	230(B)	. 20(B)	<4.1	<20.0	. 111	NA	0.510(J)	<0.25(J)	benzene – $0.060(J) \mu g/L$ ethylbenzene – $0.240(J) \mu g/L$ o-xylene – $0.260(J) \mu g/L$ $1,2,4$ -trimethylbenzene – $0.200(J) \mu g/L$ $1,3,5$ -trimethylbenzene – $0.210(J) \mu g/L$ isopropylbenzene – $0.350(J) \mu g/L$ methyl $tert$ -butyl ether – $0.140(J) \mu g/L$	EPA ²⁷
	Jun-14	18	0.2(J)	ND	ND	ND	ND	NA	NA		WYDEQ ³⁴
	Aug-14	12	0.43(J)	ND	ND	77(J)	ND	NA	NĀ	pyruvic Acid – 2060 μg/L	WYDEQ ³⁴
PGDW21	Mar-09	54.1	NA	NA	NA	NA	NA	NA	NA		EPA ²⁷
PGDW22	Mar-09	<5.00	NA	NA	<20	27.1	NA	<0.20(J)	<0.20(J)		EPA ²⁹
	Jan-10	<5.00	<10.0	<15.0	<20	154	NA	< 0.10	<0.10		EPA ³⁰
PGDW23	Mar-09	146	NA	NA	<20	<15.0	NA	NA	NA		EPA ²⁹
	Jan-10	149	<10.0	<15.0	<20	<20.0	NA	<0.20(J)	<0.20(J)		EPA ³⁰
	Apr-11	178(B)	<4.8	<6.7	<20.0	21.1(B)	NA	<0.10	<0.10		EPA ²⁷

Well Name	Date	Methane	Ethane	Propane	GRO	DRO	DRO (SGCU)	Adamantane	1,3-Dimethyl Adamantane	Other Hydrocarbon and TICs	References
	Apr-12	226	19	11.4	<20.0	<20.0	NA	<0.25	<0.25		EPA ³³
	Jun-14	98	0.76(J)	ND	ND	21(J)	ND	NA	NA	beta-BHC – 0.06 (J) μg/L	
	Aug-14	210	0.77(J)	ND	ND	ND	ND	NA	NA		WYDEQ ³⁴ WYDEQ ³⁴
PGDW26	Mar-09	<5.00	NA	NA	NA	NA	NA	NA	NA		EDA 29
	Apr-11	27(B)	<4.8	<6.7	<20.0	47.2	NA	<0.10	<0.10		EPA ²⁹ EPA ²⁷
PGDW30	Mar-09	558	NA	NA	NA	46.8	NA	NA	NA		EDA 29
	Jan-10	808	<10.0	<15.0	<20.0	35.0	NA	<0.20(J)	1.81(J)	1,3,5-trimethyladamantane (TIC) - 0.29 ug/L	EPA ²⁹ EPA ³⁰ EPA ²⁷
	Oct-10	760(B)	<3.0	<4.1	29.4	32.7	NA	<0.25	2.48		EDA 27
	Apr-11	644	76(B)	<6.7	21.6(B)	37.0	NA	<0.10	0.98	1 3-dimethyladamantane + isomers (TIC) - 3 96 µg/I	EDA 27
	Apr-12	384	3	<3.8	27.3	43.8	NA	<0.25	2.50	1,3-dimethyladamantane + isomers (TIC) - 3.96 μg/L 1,4-dimethyladamantane (TIC) – 2.33 μg/L	EPA ²⁷ EPA ³³
	Jun-14	720	0.39(J)	ND	ND ND	34(J)	21(J)	NA	NA NA	1, Cancayladamanaac (120) 2.55 µg/L	EPA 34
	Aug-14	1100	0.39(J) 0.61(J)	ND	ND ND	$-1 - \frac{34(3)}{74(3)} - \cdots$	ND	NA NA	NA NA		WYDEQ ³⁴
PGDW32	Mar-09	21.4	NA	NA NA	NA NA	19.2	NA NA	NA NA	NA NA		WYDEQ ³⁴ EPA ²⁹
FGD W 32	Jan-10	36.3	<10.0	<15.0	22.6	<20.0	NA NA	0.30	<0.20	Lathyd A mathyd hangana (TIC) 0 17 ya/f	EPA ²⁵
	Apr-11	67(B)	<4.8	<6.7	22.4(B)	<20.0 <20.9/<22	NA NA	0.12(J)/0.12(J)	<0.20	1-ethyl-4-methyl benzene (TIC) - 0.17 ug/L	EPA ²⁹ EPA ²⁷
	Jun-14	33	0.2 (J)	0.2(J)	ND ND	ND	ND	NA NA	NA	isopropanol – 24 (Ĵ) μg/L isopropylbenzene – 0.1(Ĵ) μg/L tert-butyl alcohol – 2.0(Ĵ) μg/L gamma BHC (lindane) – 0.08(Ĵ) μg/L	EPA ²⁷ WYDEQ ³⁴
	Aug-14	68	ND	ND	ND	ND	ND	NA	NA	isopropylbenzene – 0.1(J) µg/L	WYDEQ ³⁴
PGDW33	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA	1,110	EPA ²⁹
	Jun-14	0.44(J)	ND	ND	ND	ND	ND	NA	NA	2-butoxyethanol – 3300(J) μg/L isopropanol – 3.5(J) μg/L endosulfan II – 0.1(J) μg/L gamma BHC (lindane) – 0.1(J) μg/L	WYDEQ ³⁴
	Aug-14	0.3(J)	ND	ND	ND	ND	ND	NA	NA		WYDEQ ³⁴
PGDW34	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW35	Mar-09	21.6	NA	NA	NA	17.9	NA	NA	NA		EPA ²⁹
PGDW36	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW40	Jan-10	.98.9	<10.0	<15.0	<20.0	32.6	NA	<0.20	0.36		EPA ³⁰
PGDW41A	Jun-14	ND	ND	ND	ND	150(J)	ND	NA	NA	methylene chloride – 0.2(J) μg/L	WYDEQ ³⁴
PGDW41	Jan-10	<5.00	<10.0	<15.0	<20.0	479	NA	<0.20	<0.20		EPA ³⁰
	Apr-11	385	142(B)	<6.7	<20.0	132	NA	<0.25	<0.25	· ·	EPA ²⁷
	Jun-14	1.6(J)	0.2(J)	ND	ND	170(J)	180(J) N	A	NA		WYDEQ ³⁴
	Aug-14	2.0(J)	ND	ND	ND	250(J)	230(J) N	<u> </u>	NA		WYDEQ ³⁴
PGDW42	Jan-10	60.0	<10.0	<15.0	<20.0	21.6	NA	<0.20(J)	<0.20(J)		EPA ³⁰
PGDW43	Jan-10	<5.00	<10.0	<15.0	<20.0	49.7	NA	<0.20	<0.20	benzene $-0.540~\mu g/L$ acenaphthylene $-0.210~\mu g/L$ naphthalene $-0.300~\mu g/L$ phenol $-0.170~\mu g/L$	EPA ³⁰
PGDW44	Jan-10	<5.00	<10.0	<15.0	<20.0	44.3	NA	<0.20(J)	<0.20(J)	2-methylnaphthalene - 0.370(J) µg/L fluorene - 0.150(J) µg/L I-methyl naphthalene (TIC) - 0.33 µg/L 1,6-dimethyl naphthalene (TIC) - 0.42 µg/L 1,7-dimethyl naphthalene (TIC) - 0.48 µg/L 2,7-dimethyl naphthalene (TIC) - 0.25 µg/L	EPA ³⁰

Well Name	Date	Methane	Ethane	Propane	GRO	DRO	DRO (SGCU)	Adamantane	1,3-Dimethyl Adamantane	Other Hydrocarbons and TICs	References
	Apr-11	24(B)	<4.8	<6.7	<20.0	60.5(B)	NA	<0.25	<0.25		EPA ²⁷
	Jun-14	1.3(JP)	0.37(J)	0.51(J)	ND	31(J)	ND	NA	NA	isopropanol – 11(J)	WYDEQ ³⁴
		115(61)	0.57(0)	0.01(0)	1,5	31(0)	1.2			gamma BHC (lindane) – 0.02(J) naphthalene – 0.2(J)	WIDEQ
	Aug-14	1.4(J)	0.43(J)	0.59(J)		1	†	NA	NA		WYDEQ ³⁴
PGDW45	Jan-10	<5.00	<10.0	<15.0	<20.0	41.3	NA	<0.20(J)	<0.20(J)	1,3-dimethyladamantane + isomers – 9.5 μg/L	EPA ³⁰ EPA ²⁷
	Apr-11	24(B)	64(B)	<6.7	<20.0	32.1	NA	< 0.10	1.25		EPA ²⁷
	Jun-14	1(J)	ND	ND	25(J)	ND	33(J)	NA	NA	isopropanol – 15(J) μg/L gamma BHC (lindane) - 0.06(J) μg/L	WYDEQ ³⁴
PGDW46	Jan-10	<5.00	<10.0	<15.0	<20.0	25.5	NA	<0.20	< 0.20	g	EPA ³⁰
PGDW47	Jan-10	<5.00	<10.0	<15.0	<20.0	26.6	NA	<0.20(J)	<0.20(J)		EPA ³⁰
PGDW48	Jan-10	<5.00	<10.0	<15.0	<20.0	<20.0	NA	<0.20	<0.20		EPA ³⁰
PGDW49	Jan-10	<5.00	<10.0	<15.0	<20.0	130	NA	<0.20	<0.20		EPA 30
100	Apr-11	24(B)	62(B)	<6.7	<20.0	51.9	NA	<0.10	<0.10	+	EPA ³⁰ EPA ²⁷
	Jun-14	0.2(JP)	ND	ND ND	ND	110(J)	ND	NA	NA		EPA-
	_	0.2(JP) 0.3(JP)		ND ND	ND ND		ND	NA NA	NA NA	endosufan II – 0.07(J) μg/L	WYDEQ ³⁴
	Aug-14	0.3(JP)	ND	ND	ND	38(J)	ND	NA	NA		WYDEQ ³⁴
P108128.0W	NS										
P124049.0W P146856.0W	NS NS										
P197335.0W	NS				+						
P197336.0W	NS										
P200885.0W	NS										
P22660.0P	NS										
P22661.0P	NS						-				
P22662.0P P24502.0P	NS NS										
P24508.0P	NS				+		+				
P29496.0P	NS										
P31805.0W	NS										
P41320.0W	NS										
P41517.0W	NS	-					-				
P44255.0W P59499.0W	NS ·						1				
P60032.0W	NS						+				
P66345.0W	NS						<u> </u>				
P69549.0W	NS										
P91293.0W	NS										
P99671.0W	NS NS	<u> </u>	D1/ 37 : =				1				
Domestic We						NTA.	I NTA	NTA.	NT A	T	1 20
PGDW03	Mar-09	NA	NA	NA	NA	NA <20.0	NA	NA	NA		EPA ²⁹
	Jan-10	<5.00	<10.0	<15.0	<20.0		NA	<0.20	<0.20		EPA ³⁰
PGDW04	Mar-09 Jan-10	<5.00 <5.00	NA <10.0	NA <15.0	<20.0	<15.0 <20.0	NA NA	NA <0.20	NA <.020	 	EPA ²⁹ EPA ³⁰
PGDW13	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW15	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
P120203.0W	NS '	1 111	1111	INA	1111	1111	1111	1111	1 1		EPA
P23056.0P	NS NS										

Well Name	Date	Methane	Ethane	Propane	GRO	DRO	DRO (SGCU)	Adamantane	1,3-Dimethyl Adamantane	Other Hydrocarbons and TICs	References
ē							1 8	line in	lne hy	bor .	Ú.
100						The second second			and the second second	8	The second second second
P65111.0W	NS										
P95171.0W P9334.0P	NS NS										
P9441.0P	NS NS										
CR UW09/250											
		rom an Unlin	ed Pits		1					<u>'</u>	
PGPW01	Mar-09	<5.00	NA	NA	NA	17.1	NA	NA	NA		EPA ²⁹
	Jan-10	NA	NA	NA	NA	<20.0	NA	<0.20	<0.20		EPA ³⁰
PGPW02	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
	Jan-10	NA	NA	NA	NA	<20.0	NA	<0.20	<0.20		EPA ³⁰
	Apr-12	8(B)	<2.7	<3.8	<20.0	<20.0	NA NA	<0.25	<0.25		EPA ³³
PGDW01	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW02	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW09	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW10	Mar-09	<5.00	NA	NA	<20	23.1	NA	<0.20(J)	<0.20(J)		EPA ²⁹
	Jan-10	<5.00(J)	<10.0(J)	<15.0(J)	<20	<20.0	NA	<0.25	<0.25		EPA ³⁰
PGDW12	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW16	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW17	Mar-09	10.6	NA	NA	NA	17.5	NA	NA	NA		EPA ²⁹
PGDW18	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW19	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW24	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW25	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
	Jan-10	<5.00	<10.0	<15.0	<20	27.8	NA	<0.20	<0.20		EPA ³⁰
PGDW28	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW29	Mar-09	<5.00	NA	NA	NA	16.2	NA	NA	NA		EPA ²⁹
PGDW31	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW37	Mar-09	NA	NA	NA	NA	NA	NA	NA	NA		EPA ²⁹
PGDW38	Mar-09	<5.00 •	·NA	NA ·	NA	19.7	NA	NA	NA		EPA ²⁹
PGDW39	Jan-10	<5.00	<10.0	<15.0	<20.0	30.0	NA	<0.20(J)	<0.20(J)		EPA ³⁰
PGDW50	Apr-12	<1.3	<2.7	<3.8	<20.0	<20.0	NA	<0.25	<0.25		EPA ³³

Data (tables) from WYDEQ obtained from the Powder River Basin Resource Council in April 2015.

 $NS-Not \ sampled$

NA – Not analyzed

ND - Not detected. Method detection and reporting limits not known

TICs - Tentatively identified compounds

J – Estimated value

B - Compound detection in blank. For EPA data, detection less than 10X value in blank.

SGCU - Silica gel cleanup performed before analysis

Figure SI F1. Chromatograms of DRO analysis at (a) PGDW05 during Phase V sampling event, and (b) PGDW30 during Phase I sampling event. Handwritten note, "Early Diesel", by EPA Region 8 chemist.

Figure SI F2. Chromatograms of DRO analysis at PGDW20 during Phase I sampling event (a) aqueous sample (b) carbon trap sample. Handwritten note, "Back End of Crude Oil" by EPA Region 8 analytical chemist. During the Phase (I) sampling event, water was circulated through a carbon trap for 24 hours (cumulative water approximately 2,950 L) with detection of DRO at 377 μ g/L (EPA 2009).

.095 .096 .097

.098

G – Summary of Analytical Data Sources

Table SI G1. Major reports summarizing data and/or data quality

Agency	Report Title	Date	Source (accessed 9/1/2015)
EPA	Site Inspection – Analytical Results Report Pavillion Area	Aug 2009	http://www2.epa.gov/sites/production/files/documents/Pavillion_GWInvestigationARRTextAndMaps.pdf
	Groundwater Investigation Site, Pavillion, Fremont County,		
	Wyoming		
EPA	U.S. Environmental Protection Agency (EPA 2010a). Expanded	Aug 2010	http://www2.epa.gov/sites/production/files/documents/PavillionAnalyticalResultsReport.pdf
	Site Investigation – Analytical Results Report Pavillion Area		
	Groundwater Investigation, Fremont County, Wyoming		
EPA	Pavillion Quality Assurance Project Plans (5 revisions)	Feb 2010	ftp://ftp.epa.gov/r8/pavilliondocs/QA_Documents/QAPPs/
EPA	Audits of Data Quality (ADQ) October 2010 Sampling Event	Apr 2011	ftp://ftp.epa.gov/r8/pavilliondocs/QA Documents/Audits Of Data Quality Lab Results/Phase3/
EPA	Audits of Data Quality (ADQ) January 2010 Sampling Event	Aug 2011	ftp://ftp.epa.gov/r8/pavilliondocs/QA Documents/Audits Of Data Quality Lab Results/Phase2/ADQ-R8-PhaseII/
EPA	Audits of Data Quality (ADQ) March 2009 Sampling Event	Dec 2011	ftp://ftp.epa.gov/r8/pavilliondocs/QA Documents/Audits Of Data Quality Lab Results/Phase1/ADQ-R8-Phase1/
EPA	Audits of Data Quality (ADQ) April 2011 Sampling Event	Aug 2011	ftp://ftp.epa.gov/r8/pavilliondocs/QA Documents/Audits Of Data Quality Lab Results/Phase4/
EPA	Investigation of Ground Water Contamination near Pavillion, WY D	ec 2011	http://www2.epa.gov/region8/draft-investigation-ground-water-contamination-near-pavillion-wyoming
EPA	Investigation of Ground Water Contamination near Pavillion,	Sep 2012	ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Narrative.pdf
	Wyoming Phase V Sampling Event Summary of Methods and		
	Results		
EPA	Groundwater Sampling Results at Locations near Pavillion, WY	Sep 2012	ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf
	Pavillion Phase V (April 2012) Groundwater Quality Results and -		
	Control (QC) Data		
USGS	Transmittal of Contract Laboratory Results and Evaluation of	Aug 2012	ftp://ftp.epa.gov/r8/pavilliondocs/phase5/USGS_MW02_AdministrativeReportSep2012.pdf
	Laboratory-Specific Quality Control Measures, U.S. Environmental		
	Protection Agency Monitoring Well MW02, Pavillion Wyoming		
	2012, Administrative Report Prepared for the U.S. Environmental		
	Protection Agency. Director Approved August 30, 2012		
USGS	Sampling and Analysis Plan for the Characterization of	Sep 2012	http://pubs.usgs.gov/of/2012/1197/
	Groundwater Quality in Two Monitoring Wells near Pavillion, WY		
USGS	Groundwater-Quality and Quality-Control Data for Two	Sep 2012	http://pubs.usgs.gov/ds/718/
	Monitoring Wells near Pavillion, Wyoming, April and May 2012		
USGS	Analytical Report: Job Number: 280-28076-1 Job Description: EPA	Sep 2012	ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9 J28076-1 EPA Std Tal L4 Package MiniFinalReport.pdf
	- Pavillion Fracking		
EPA	Pavillion Gas Well Integrity Evaluation	Jul 23 2013	ftp://ftp.epa.gov/r8/pavilliondocs/OtherDocuments/WellAndFieldPitsEvaluationJuly2013/GasWellIntegrityEvaluation
		1	25July2013Final.pdf
EPA	Pavillion Oil & Gas Field Pits Evaluation	Jul 25 2013	ftp://ftp.epa.gov/r8/pavilliondocs/OtherDocuments/WellAndFieldPitsEvaluationJuly2013/25July2013PavillionPitsRep
			ort4pmFinal.pdf
	avillion Field Well Integrity Review	Oct 2014	http://wogcc.state.wy.us/pavillionworkinggrp/PAVILLION REPORT 1082014 Final Report.pdf
WOGCC F	avillion Field Pit Review	Jun 2015	http://wogcc.state.wy.us/pavillionworkinggrp/PAVILLION_REPORT_1082014_Final_Report.pdf

Table SI G2. Summary of analytical methods used and sources of data and associated information on quality control and assurance.

.099

Parameters	Phase	Medi	Methods		Lab	ited information on quality control and assurance. Sources (links) of Analytical and Associated Information on Quality Assurance and Control) accessed 9/1/2015)
		a				
Major ions, alkalinity	I	W	EPA Methods 300.0 and 310.1	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase1/R8_Lab/85621LSR_Report_Alkalinity_Anions_DRO.pdf
	II	w	EPA Methods 300.0 and 310.1.	EPA R8	,	http://www2.epa.gov/sites/production/files/documents/PavillionAnalyticalResultsReport.pdf (data summary only)
	III	w	RSKSOPs 276v3 and 214v5. EPA	EPA Ac	a	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/ORD_GP_Lab_Analysis_for_Phase_III/
			Methods SW-846 6500, 350.1, and 353.2		ļ	
	ĪV	w	RSKSOPs 276v3 and 214v5. EPA	EPA Ac	a	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/ORD_GP_Lab_TOC_DIC_Analysis_Phase_IV/ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/ORD_GP_Lab_TOC_DIC_Analysis_Phase_IV/DICrawdata.pdf
			Methods SW-846 6500, 350.1, and 353.2			ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/ORD GP Lab TOC DIC Analysis Phase IV/Dicrawdata.pdi ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/ORD GP Lab TOC DIC Analysis Phase IV/EPAGP256rev.
						1 SS%236030 6032 R.Wilkin Pavillion Groundwater.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/ORD GP Lab TOC DIC Analysis Phase IV/NPDOC rawdat
						a.pdf
	V	w	RSKSOPs 276v3 and 214v5. EPA Methods SW-846 6500, 350.1, and 353.2	EPA Ac	a	ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
	V	w	EPA Methods 300.0, 310.1, 9056, 9060 US	GS TA		http://pubs.usgs.gov/ds/718/ (data summary only)
						ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix11_J28076-1Std_Tal_L4_Package_MiniFinalReport3.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9 J28076-1 EPA Std Tal L4 Package MiniFinalReport.pdf
Dissolved	I	W	EPA Methods 6010B, 6020, 7470A	EPA K		http://www2.epa.gov/sites/production/files/documents/Pavillion_GWInvestigationARRTextAndMaps.pdf (data
Metals		- w	EPA Methods 6010B, 6020, 7470A	EPA L		summary only) http://www2.epa.gov/sites/production/files/documents/Pavillion GWInvestigationARRTextAndMaps.pdf (data
	1	\ W	EPA Methods 6010B, 6020, 7470A	EPAL		summary only)
	- - _{II}	+- w	EPA Methods 6010B, 6020, 7470A	EPA A4	<u></u>	http://www2.epa.gov/sites/production/files/documents/PavillionAnalyticalResultsReport.pdf (data summary only)
	- - ;; ;;	†- <u>w</u>	RSKSOP 213v4 and 257v2. or 332V0	EPA S	}	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/Shaw Metals Analysis Phase III/
	111	''	and EPA Methods 200.7 and 6020.			ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/Shaw Metals Analysis Phase III/Shaw Metals Analysis Phase
						e III-ICP Data/
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/Shaw Metals Analysis Phase III/Shaw Metals Analysis Phase
						e III-ICP Data/ICP Data 1 of 2 101110.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/Shaw Metals Analysis Phase III/Shaw Metals Analysis Phase III-ICP Data/ICP Data 2 of 2 101110.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/Shaw Metals Analysis Phase III/Shaw Metals Analysis Phas
	.	ļ. <u>.</u>			ļ	e III-ICP Data/Pavillion ICP-MS Data.pdf
	ĪV	w	RSKSOP 213v4 and 257v2, or 332V0	EPA S		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Metals Phase IV/ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Metals Phase IV/7ME743SF ICP-MS 1of2.pdf
			and EPA Methods 200.7 and 6020.			http://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Metals Phase IV//ME/43SF ICP-MS 1012.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Metals Phase IV/7ME743SF ICP-MS 20f2.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Metals Phase IV/7ME743SF ICP 051011 1of2.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Metals Phase IV/7ME743SF ICP 051011 2of2.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Metals Phase IV/7ME743SF ICP 051111 1of2.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Metals Phase IV/7ME743SF ICP 051111 2of2.pdf
	.	ļ. <u>.</u>		L	ļ	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Metals Phase IV/7ME743SF ICP 051211.pdf
	V	W	RSKSOP 213v4 and 257v2, or 332V0 and EPA Methods 200.7 and 6020.	EPA S		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
	- V	-w	EPA Methods 6010B, 6020, 7470A	EPA C	ļ	ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9_J28076-1_EPA_Std_Tal_L4_Package_MiniFinalReport.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix10 J28076-1Std Tal L4 Package MiniFinalReport2.pdf
	.			<u> </u>	L	ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix11_J28076-1Std_Tal_L4_Package_MiniFinalReport3.pdf
	V	w	EPA Methods 6010B, 6020, 7470A	USGS 7	A	http://pubs.usgs.gov/ds/718/ (data summary only)
						ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix10_J28076-1Std_Tal_L4_Package_MiniFinalReport2.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix11 J28076-1Std Tal L4 Package MiniFinalReport3.pdf ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9 J28076-1 EPA Std Tal L4 Package MiniFinalReport.pdf
Fixed Gases,	ī	W	ORGM-004	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/pnase3/Appendix9_J280/6-1_EPA_Std_Tai_L4_Package_wimirinaikeport.pdi
C1-C4	1	"	OKOM-004		1	Teps representation paymon to the control of the co
	· II	†- w	ORGM-004	EPA R8	ţ	http://www2.epa.gov/sites/production/files/documents/PavillionAnalyticalResultsReport.pdf (data summary only)
						The state of the s

w Light Hydrocarbon and Fixed Gases Phase III- w Light Hydrocarbons and Fixed Gases Phase III- w Light Hydrocarbon and Fixed Gases Phase III- w Light Hydrocarbon and Fixed Gases Phase III- w Light Hydrocarbon and Fixed Gases Phase III- w Light Hydrocarbons and Fixed Gases Phase III- w Light Hydrocarbons and Fixed Gases Phase III/ w Light Hydrocarbons and Fixed Gases Phase III/RSKS w Light Hydrocarbons and Fixed Gases Phase III/RSKS w Light Hydrocarbons and Fixed Gases Phase III/RSKS
w Light Hydrocarbons and Fixed Gases Phase IV/ w Light Hydrocarbons and Fixed Gases Phase IV/7OA7 w Light Hydrocarbons and Fixed Gases Phase IV/7OA7
er2012Appendices.pdf (data summary only)
76-1 EPA Std Tal L4 Package MiniFinalReport.pdf
ech Gas Analysis Phase IV/ ech Ground Water Analysis Phase IV/
er2012Appendices.pdf (data summary only)
w IRMS Analysis for Phase III/ w IRMS Analysis for Phase III/Raw Data-1.pdf w IRMS Analysis for Phase III/Raw Data-2.pdf w IRMS Analysis for Phase III/Raw Data Summary Ta
w IRMS Data Phase IV/RawData1.pdf w IRMS Data Phase IV/RawData2.pdf w IRMS Data Phase IV/RawData3.pdf w IRMS Data Phase IV/RawDataSummary.pdf
er2012Appendices.pdf (data summary only)
illion_GWInvestigationARRTextAndMaps.pdf (data
illionAnalyticalResultsReport.pdf (data summary only)
_ab/GCMS8260VolatilesW.O.1001003.pdf _ab/Jan2010VOCAnalysis-0B04001.pdf _ab/Jan2010VOCAnalysis-0B10001.pdf
abDocumentation_PhaseIII/Oct2010VOCAnalysis- abDocumentation_PhaseIII/SequenceNo0J18003.pdf abDocumentation_PhaseIV/Apr2011R8LabDataPkg_SR11

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	kGM-515r1.1 and EPA Methods 3520 and 8270D	EPA R8	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase2/R8Lab/GCMS8270SemivolatilesW.O. 1001002and1001003.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase2/R8Lab/Jan2010SVOCAnalysis-0C08003.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase2/R8Lab/Jan2010SVOCAnalysis-PavillionSpecificCompounds- 0C04002.pdf
		,,,,,,,,,		EPA R8	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase2/R8Lab/GCMS8270SemivolatilesW.O.1001002and1001003.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase2/R8Lab/Jan2010SVOCAnalysis-0C08003.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase2/R8Lab/Jan2010SVOCAnalysis-PavillionSpecificCompounds-
		1, 5 0.	RGM-515r1.1 and EPA Methods 3520	EPA R8	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase2/R8Lab/GCMS8270SemivolatilesW.O.1001002and1001003.pdf
	II	W S O	and 8270D	<u> </u>	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase1/R8_Lab/March2009SVOCAnalysis-9C23005.pdf
SVOCs	I	W	ORGM-515r1.1 and EPA Methods 3520	EPA R8	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase1/R8_Lab/85622Headspace8270.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix6_280-28076-1_DataValidationReview.pdf ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9_J28076-1_EPA_Std_Tal_L4_Package_MiniFinalReport.pdf
			EPA Methods 5030B and 8260B	USGS TA	http://pubs.usgs.gov/ds/718/ (data summary only)
	v	W	RSKSOP-259v1, EPA Methods SW-846 5021A and 8260B	EPA S	ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
		l ''	5035 and 8260B	Ll	2.
		- w	ORGM-501r1.1. EPA Methods SW-846	EPA R8	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw_VOCs_Phase_IV/TextBackup.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw_VOCs_Phase_IV/SampleList_BFB_Tunes_and_AirWate_rCheck.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV/SampleData.pdf
					993 Wilkin Pavillion Groundwater queue.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV/OCdata.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV/7OA767SF SS%236030 and 6032 23
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV/CalibrationCurves.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw_VOCs_Phase_IV/7OA724SFSS%236032Part2.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw_VOCs_Phase_IV/7OA724SFSS%236032Part3.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV/70A724SFSS%236032Part1.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV/7OA724SFSS%236030Part6.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV/7OA724SFSS%236030Part5.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV/7OA724SFSS%236030Part4.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV//OA/24SFSS%236030Part3.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw_VOCs_Phase_IV/7OA724SFSS%236030Part1.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw_VOCs_Phase_IV/7OA724SFSS%236030Part2.pdf
			5021A and 8260		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw VOCs Phase IV/Report.pdf
	IV	W	RSKSOP-259v1, EPA Methods SW-846	EPA S	ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw_VOCs_Phase_IV/
				Ll	<u>1D29001.pdf</u>
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R8LabDocumentation PhaseIV/April2011VOCAnalysis-
					nceNo1D29001.pdf
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R8LabDocumentation PhaseIV/Apr2011R8LabDataPkg Seque
					ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R8LabDocumentation_PhaseIV/Apr2011R8LabDataPkg_Seque_nceNo1D25001.pdf

	·r	Ţ	1	ſl		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R8LabDocumentation PhaseIV/April2011SVOCAnalysis-
						PavillionSpecificCompounds-1E18003.pdf
	v	w	ORGM-515r1.1 and EPA Methods 3520	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
	.L		and 8270D	L		
	V	W	EPA Methods 3520C and 8270C	USGS TA		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9_J28076-1_EPA_Std_Tal_L4_Package_MiniFinalReport.pdf
DRO	I	W	ORGM-508r1.0, EPA Methods 8015B	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase1/R8_Lab/85621LSR_Report_Alkalinity_Anions_DRO.pdf
	.	ļ	and 8015D			
	II	W, S O	RGM-508r1.0, EPA Methods 8015B	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase2/R8Lab/DROW.O.1001002and1001003and1001005.pdf
			and 8015D			
	II	W	ORGM-508r1.0, EPA Methods 8015B and 8015D	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/R8LabDocumentation_PhaseIII/SequenceNo0J12001.pdf
	. - <u></u>	- w	ORGM-508r1.0, EPA Methods 8015B	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/R8LabDocumentation PhaseIII/PavillionNo2 LSR1010-
	1111	W	and 8015D	EPA K8		hb://hp.epa.gov/rs/pavimondocs/RawLabData/Phases/R8LabDocumentation_PhaseIII/PavimonNo2_LSR1010- 017.pdf
			ORGM-508r1.0, EPA Methods 8015B	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R8LabDocumentation PhaseIV/Apr2011R8LabDataPkg Seque
	1'	''	and 8015D	LITTICO		ne-No1D26001.pdf
	†- v	†- <u>w</u>	ORGM-508r1.0, EPA Methods 8015B	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
			and 8015D			
	v	w	EPA Methods 3510C and 8015B	USGS TA		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9_J28076-1_EPA_Std_Tal_L4_Package_MiniFinalReport.pdf
GRO/BTEX	I	W	ORGM-506r1.0, EPA Method: 8015D,	EPA R8,		http://www2.epa.gov/sites/production/files/documents/Pavillion GWInvestigationARRTextAndMaps.pdf (data
	.L	L	CLP	I I	Е	summary only)
	II		RGM-506r1.0, EPA Method: 8015D	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase2/R8Lab/GROW.O.1001003and1001005.pdf
	III	W	ORGM-506r1.0, EPA Method: 8015D	EPA R8		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/R8LabDocumentation_PhaseIII/SequenceNo0J06001.pdf
	l IV		 			ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase3/R8LabDocumentation PhaseIII/SequenceNo0J07001.pdf
	. <u>IV</u>	W	ORGM-506r1.0, EPA Method 8015D	EPA R8		
	. - \	W	ORGM-506r1.0, EPA Method 8015D EPA Methods 5030B and 8015B	EPA R8 USGS TA		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
Classella	IV	W	Method in development based on ASTM			ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9_128076-1_EPA_Std_Tal_L4_Package_MiniFinalReport.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3_Phase_IV/R3GlyFinalNSF558_18July2011_1654.pdf
Glycols	110	W	D773-11	EPA R3		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/R3GlyFmainSF538 18July2011 1654.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/BenchsheetSamplePreparationLog.pdf
			D//3-11			ftp://ftp.epa.gov/rs/pavinfondocs/RawLabData/Phase4/R3 Phase IV/CalibrationData1.pdf
						ftp://ftp.epa.gov/rs/pavilliondocs/RawLabData/Phase4/R3 Phase IV/CalibrationData2.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/CasefileNotes.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/LogbookCopiesRunLogs1.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/LogbookCopiesRunLogs2.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/MS TunesAndStandards1.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/MS TunesAndStandards2.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3_Phase_IV/MS_TunesAndStandards3.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/MS TunesAndStandards4.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/MS TunesAndStandards5.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/OnDemandDataChecklist.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/QualityControlData1.pdf
						ftp://ftp.epa.gov/ro/paviniondocs/RawLabData/Phase4/R3 Phase IV/QualityControlData1.pdf
1						ftp://ftp.epa.gov/rs/pavilliondocs/RawLabData/Phase4/R3 Phase IV/QualityControlData3.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/SampleData1.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/SampleData2.pdf
1						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/SampleData3.pdf
						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3 Phase IV/SampleData4.pdf
		<u></u>]	<u> </u>		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/R3_Phase_IV/SummaryOfResultsProjectInformation1of3.pdf
	V	W	Method in development based on ASTM	EPA R3		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
	.	ļ	D773-11	ļļ		
	V	W	EPA Method 8015	USGS TA		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9_J28076-1_EPA_Std_Tal_L4_Package_MiniFinalReport.pdf
LMWOAs	IV	W	RSKSOP-112v6	EPA S		ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw_Low_Molecular_Weight_Acids_Phase_IV/
]			ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Low Molecular Weight Acids Phase IV/7OA724SF S S%236030 HPLC lof2.pdf

						ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Low Molecular Weight Acids Phase IV/7OA724SF S S%236030 HPLC queue.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Low Molecular Weight Acids Phase IV/7OA724SF S S%236032 HPLC 2of2.pdf ftp://ftp.epa.gov/r8/pavilliondocs/RawLabData/Phase4/Shaw Low Molecular Weight Acids Phase IV/7OA724SF S
	L	l		L	l	S%236032 HPLC queue.pdf
	V	W	RSKSOP-112v6	EPA S	[ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
Ethoxylates,	V	W	Method in Development based on ASTM	EPA LV		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
Alkylphenols			D7458-09 and USGS Method O1433-01			
Acrylamide	V	W	Method in Development based on EPA	EPA LV		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
			Methods 8032A and 8316			
MBAS	V	W	EPA Method 425.1	EPA TA		ftp://ftp.epa.gov/r8/pavilliondocs/phase5/PavillionSeptember2012Appendices.pdf (data summary only)
	V	W	EPA Method 425.1	USGS T	Α	ftp://ftp.epa.gov/r8/pavilliondocs/phase5/Appendix9 J28076-1 EPA Std Tal L4 Package MiniFinalReport.pdf
Methanol	V	W	EPA Method SW-846 8015M	EPA S		https://foiaonline.regulations.gov/foia/action/public/view/request?objectId=090004d2806a7021

Abbreviations

C1-C4 – methane, ethane, propane, and butane

VOCs - volatile organic compounds

SVOCs –semi-volatile organic compounds

LMWOAs - low molecular weight organic acids

MBAS -

100 101

102 103

104 105

138 139

140

GRO – gasoline range organic compounds

DRO – diesel range organic compounds

W - water

G - gas

S - solids

Laboratories

- A ALS Laboratory Group, Salt Lake City, UT
- A4 A4 Scientific, The Woodlands, TX
- Ada EPA Office of Research and Development, Ada, OK
- C Chemtech
- E Energy Laboratories Inc., Billings, MT
- I Isotech Laboratories, Champaign, IL
- K KAP Laboratories, Vancouver, WA.
- L Liberty Analytical, Salt Lake City, UT
- LV EPA Office of Research and Development, Las Vegas, NV
- R3 EPA Region 3 Laboratory, Fort Meade, MD
- R8 EPA Region 8 Laboratory, Golden, CO.
- S Shaw Environmental, Ada, OK
- TA Test America, Denver, CO
- Z Zymax

Analytical Methods

- ORGM-501r1.1 EPA Region 8 Standard Operating Procedure used with EPA Method 8260 for VOC analysis
- ORGM-506 r1.0 EPA Region 8 Standard Operating Procedure used with EPA Method 8015 for GRO analysis
- ORGM-508 r1.0 EPA Region 8 standard operating procedure used with EPA Method 8015D for DRO analysis
- ORGM-515 r1.1 EPA Region 8 standard operating procedure used with EPA Methods 3520 and 8270D for SVOC analysis
- RSKSOP-112v6 EPA Standard Operating Procedure for Quantitative Analysis of Low Molecular Weight Acids in Aqueous Samples by HPLC
- RSKSOP-175v5 Sample Preparation and Calculations for Dissolved Gas Analysis in Water Samples Using a GC Headspace Equilibration Technique, 16 p.
- RSKSOP-194v4 Gas Analysis by Micro Gas Chromatographs (Agilent MIcro 3000), 13 p.
- RSKSOP-213v4 Standard operating procedure for operation of Perkin Elmer Optima 3300 DV ICP-OES, 21 p.

- 141 RSKSOP-214v5 - Quality control procedures for general parameters analysis using Lachat Flow Injection analysis (FIA), 10 p.
- 142 RSKSOP-259v1 - Determination of volatile organic compounds (fuel oxygenates, aromatic and chlorinated hydrocarbons) in water using automated headspace gas chromatography/mass spectrometry TEKMAR 7000 HS-143
 - Varian 2100T GC/MS system-ION trap detector, 28 p.
- 144 RSKSOP-257v2 - Standard operating procedure for elemental analysis by ICP-MS, 16 p. 145 146
 - RSKSOP-299v1 Determination of Volatile Organic Compounds (Fuel Oxygenates, Aromatic and Chlorinated Hydrocarbons) in Water Using Automated Headspace Gas Chromatography/Mass Spectrometry (Agilent
 - 6890/5973 Quadruple GC/MS System), 25 p.

148

149

159

161

162

163

164

165

166

167

- RSKSOP-276v3 Determination of major anions in aqueous samples using capillary ion electrophoresis with indirect UV detection and Empower 2 software, 11 p.
- RSKSOP-296v0 Determination of hydrogen and oxygen isotope ratios in water samples using high temperature conversion elemental analyzer (TC/EA), a continuous flow unit, and an isotope ratio mass spectrometer
- RSKSOP-297v1 Metals Speciation Determination by LC/ICP-MS, 21 p.
- 150 151 152 153 154 155 156 157 158 RSKSOP-298v1 - Arsenic Speciation Determination by LC/ICP-MS with Anion Suppression and NaOH Mobile Phase, 21 p.
 - RSKSOP-313v1 Determination of R-123 using the H25-IR Infrared Refrigerant Gas Leak Detector, 12 p.
 - RSKSOP-314v1 Determination of Fixed Gases using the GEM2000 and GEM2000 Plus Gas Analyzers & Extraction Monitors, 13 p.
 - RSKSOP-320v1 Determination of Organic and Inorganic Vapors Using the TVA-1000B Toxic Vapor Analyzer, 18 p.
 - RSKSOP-330v0 Determination of Various Fractions of Carbon in Aqueous Samples Using the Shimadzu TOC-VCPH Analyzer, 16 p.
 - EPA Method 200.7 Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Spectrometry, Rev. 5, Jan 2001
 - EPA Method 300.0 Determination of Inorganic Anions by Ion Chromatography, Rev. 2.1, Aug. 1993.
 - EPA method 310.1 Alkalinity (Titrimetric, pH 4.5), Rev. 1978.
 - EPA Method 350.1 Determination of Ammonia Nitrogen by Semi-Automated Colorimetry, Rev. 2, Aug. 1993.
- 160 U.S. EPA Method 5021A - Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis, Rev. 1, June 2003.
 - U.S. EPA Method 6020 Inductively Coupled Plasma-Mass Spectrometry, Rev. 1, Feb. 2007.
 - U.S. EPA Method 6500 Dissolved Inorganic Anions in Aqueous Matrices by Capillary Electrophoresis, Rev. 0, Feb. 2007.
 - U.S. EPA Method 8260C Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Rev. 3, Aug. 2006.
 - EPA Method 8015B Determination of Nonhalogenated Organics Using GC/FID, Rev. 2, Dec. 1996.
 - U.S. EPA Method 8015D Nonhalogenated Organics Using GC/FID, Rev. 4, May 2003.
 - U.S. EPA Method 8270D Determination of Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Rev. 4, Feb. 2007.
 - U.S. EPA Method 8000C Determinative Chromatographic Separations, Rev. 3, Mar. 2003.
 - U.S. EPA Method 8260C Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Rev. 3, Aug. 2006.
- 169 U.S. EPA Method 8270D - Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Rev. 4, Feb. 2007. 170
 - U.S. EPA Method 9060A Total Organic Carbon, Rev. 1, Nov. 2004.

References

1173 (1) Finn, T.M. Source Rock Potential of Upper Cretaceous Marine Shale in the Wind River Basin, Wyoming in USGS Wind River Province Assessment Team, Petroleum systems and geologic assessment of oil and gas in the Wind River Basin Province, Wyoming: U.S. Geological Survey Digital Data Series DDS-69J, ch 8, 24p. 2007.

1177 (2) Finn, T.M. Subsurface Stratigraphic Cross Sections of Cretaceous and Lower Tertiary Rocks in the Wind River
 1178 Basin, Central Wyoming, in USGS Wind River Province Assessment Team, Petroleum systems and geologic
 1179 assessment of oil and gas in the Wind River Basin Province, Wyoming: U.S. Geological Survey Digital Data Series
 1180 DDS-69J, ch 9, 28p. 2007.

(3) Johnson, R.C.; Finn, T.M.; Kirschbaum, M.A.; Roberts, S.B.; Roberts, L.R.; Cook, T.; Taylor, D.J. *The Cretaceous-Lower Tertiary Composite Total Petroleum System, Wind River Basin, Wyoming*, in USGS Wind River
 Province Assessment Team, Petroleum systems and geologic assessment of oil and gas in the Wind River Basin
 Province, Wyoming: U.S. Geological Survey Digital Data Series DDS-69J, Chapter 4, 2007.

(4) Roberts, L.N.R., Finn, T.M., Lewan, M.D. Kirsch baum, M.A. *Burial History, thermal Maturity, and Oil and Gas Generation History of Petroleum Systems in the Wind River Basin Province, Central Wyoming*, in USGS Wind River Province Assessment Team, Petroleum systems and geologic assessment of oil and gas in the Wind River Basin Province, Wyoming: U.S. Geological Survey Digital Data Series DDS-69J, Chapter 6, 2007.

(5) Daddow, R.L. Water resources of the Wind River Indian Reservation, Wyoming. U.S. Geological Survey Water Resources Investigation Report 95-4223, 1996

1195 (6) McGreevy, L.J.; Hodson, W.G.; Rucker IV, S.J. Ground-Water Resources of the Wind River Indian Reservation
 1196 Wyoming, Geological Survey Water-Supply Paper 1576-1, 1969

(7) Morris, D.A.; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H. *Ground-Water Resources of Riverton Irrigation Project Area, Wyoming*, Geological Survey Water-Supply Paper 1375, 1959.

(8) Nelson, P.H.; Kibler, J.E. *Distribution of Fluids and Pressures in the Wind River Basin, Wyoming*, In USGS Wind River Province Assessment Team, Petroleum systems and geologic assessment of oil and gas in the Wind River Basin Province, Wyoming: U.S. Geological Survey Digital Data Series DDS-69J, Chapter 7, 2007.

(9) Single, E.L. *Pavillion Field, Fremont County, Wyoming*. In Wyoming Geological Association 21st Field Conference Guidebook, 1969, 101-103.

(10) Bjorklund, T.K. *Pavillion Gas Field, Resources of the Wind River Basin*, 30th Annual Field Conference, Wyoming Geological Association Guidebook, 1978

(11) Roberts, S., Roberts, L.N.R., Cook, T. Geologic Assessment of Undiscovered Petroleum Resources in the
 Waltman Shale Total Petroleum System, Wind River Basin Province, Wyoming, in USGS Wind River Province
 Assessment Team, Petroleum systems and geologic assessment of oil and gas in the Wind River Basin Province,
 Wyoming: U.S. Geological Survey Digital Data Series DDS-69J, Chapter 5, 2007.

(12) Johnson, R.C.; Keighin, W.C. Origins of natural gases from upper Cretaceous reservoirs, Bighorn Basin,
 Wyoming and Montana, and comparison with gases from the Wind River Basin, Wyoming: In Keefer, W.R. and
 Goolsby, J.E. eds. Cretaceous and Lower Tertiary Rocks of the Bighorn Basin, Wyoming and Montana: Wyoming
 Geological Association Forty-Ninth Guidebook, 1998, 223-249.

(13) Johnson, R.C.; Rice, D.D. Variations in composition and origins of gases from coal bed and conventional
 reservoirs, Wind River Basin, Wyoming, in Keefer, W.R, Metzger, W.J. and Godwin, L.H. eds., Oil and Gas and
 Other Resources of the Wind River Basin, Wyoming: Wyoming Geological Association Special Symposium, 1993,
 319-335.

- 1226 (14) Lillis, P.G.; Johnson, R.C. Characterization of the natural gas systems of the Wind River Basin, Wyoming 1227 [abs.]: American Association of Petroleum Geologist. Rocky Mountain Section Meeting, Jackson Hole, Wyoming,
- 1228 Sept 24-26, 2005.
- 1229
- 1230 (15) Schelling, D.D.; Wavrek, D.A. Structural Geology and Petroleum Systems of the Northwestern Wind River 1231 Basin, Wyoming [abs.]: American Association of Petroleum Geologists Bulletin. 2001, 85 (13)
- 1232
- 1233 (16) Keefer, W.R.; Johnson R.C. Stratigraphy and oil and gas resources in uppermost Cretaceous and Paleocene 1234 rocks, Wind River Reservation, Wyoming, in W.R. Keefer, W.J. Metzger and L.H. Godwin, eds., Oil and Gas and 1235 Other Resources of the Wind River Basin, Wyoming: Wyoming Geological Association Special Symposium, 1993,
- 1236 71-86.
- 1237
- 1238 (17) Courdin, J.L.; Hubert, J.F. Sedimentology and Mineralogic Differentiation of Sandstones in the Fort Union 1239 Formation (Paleocene), Wind River Basin, Wyoming, in Twenty-First Annual field Conference, Wyoming Geological Association Guidebook, 1969, 29-37.
- 1240
- 1241
- 1242 (18) Flores, R.M.; Keighin, C.W. (1993). Reservoir Anisotropy and Facies Stratigraphic Framework in the 1243 Paleocene Front Union Formation, Western Wind River Basin, Wyoming, in W.R. Keefer, W.J. Metzger and L.H.
- 1244 Godwin, eds., Oil and Gas and Other Resources of the Wind River Basin, Wyoming: Wyoming Geological
- 1245 Association Special Symposium, 1993, 121-141.
- 1246
- 1247 (19) Keefer, W.R. General Stratigraphy and Depositional History of the Fort Union, Indian Meadows, and Wind 1248 River Formations, Wind River Basing, Wyoming, in Twenty-First Annual Field Conference, Wyoming Geological
- 1249 Association Guidebook, 1969, 19-28.
- 1250
- 1251 (20) Keefer, W.R. Stratigraphy and Geologic History of the Uppermost Cretaceous, Paleocene, and Lower Eocene Rocks in the Wind River Basin, Wyoming. Geological Survey Professional Paper 495-A, United States Geological 1252
- Survey, 1965 1253
- 1254
- 1255 (21) Seeland, D. Sedimentology and Stratigraphy of the Lower Eocene Wind River Formation, Central Wyoming. 1256 Thirtiest Annual Field Conference, Wyoming Geological Association Guidebook, 1978, 181-198.
- 1257
- 1258 (22) Osiensky, J.L.; Winter, G.V.; Williams, R.E. (1984). Monitoring and mathematical modeling of contaminated 1259 ground-water plumes in fluvial environments. Groundwater, 1984, 22, 298-306.
- 1260
- 1261 (23) Stephens, D.B. Analysis of the groundwater monitoring controversy at the Pavillion, Wyoming natural gas 1262 field. Groundwater 2015, 53(1), 29-37.
- 1263
- (24) Itasca Denver, Inc. (Sterrett, R.J.). Review of the United States Environmental Protection Agency DRAFT 1264 1265 Report Entitled "Investigation of Ground Water Contamination near Pavillion, Wyoming." Prepared for: Encana Oil & Gas (USA) Inc., Denver CO, March 2012. EPA Docket ID No. EPA-HQ-ORD-2011-0895. 1266
- 1267
- (25) Gores and Associates. Pavillion Area Water Supply I Study, Final Report for the Wyoming Water Development 1268 1269 Commission, October 2011
- http://www.jamesgoresandassociates.com/DocFiles/Pavillion Area Water Supply Level I Study Final Report. 1270 1271 pdf
- 1272
- 1273 (26) Plafcan, M., Eddy-Miller, C.A., Ritz, G.F., and Holland, J.P.R. Water Resources of Fremont County, Wyoming. 1274 U.S. Geological Survey, Water-Resources Investigations Report 95-4095, 1995
- 1275
- 1276 (27) DiGiulio, D.C., Wilkin, R.T., Miller C., Oberley, G. Investigation of Ground Water Contamination near
- 1277 Pavillion, Wyoming - Draft Report. U.S. Environmental Protection Agency, Office of Research and Development,
- 1278 National Risk Management Research Laboratory, Ada, OK and Region 8, Denver CO, December 2011
- 1279

- 1280 (28) Robinson, J.W., McCabea, P.J. Sandstone-body and shale-body dimensions in a braided fluvial system: Salt 1281 wash sandstone member (Morrison formation), Garfield County, Utah. American Association of Petroleum 1282 Geologists Bulletin, 1997, 81, 1267-1291
- 1283
- 1284 (29) U.S. Environmental Protection Agency. Site Inspection – Analytical Results Report Pavillion Area
- 1285 Groundwater Investigation Site, Pavillion, Fremont County, Wyoming, CERCLIS ID# WYN000802735, URS
- 1286 Operating Services, Inc., START 3, EPA Region 8, Contract No. EP-W-05-050, August 2009.
- http://www2.epa.gov/sites/production/files/documents/Pavillion GWInvestigationARRTextAndMaps.pdf 1287

1289 (30) U.S. Environmental Protection Agency. Expanded Site Investigation - Analytical Results Report Pavillion Area Groundwater Investigation, Fremont County, Wyoming, Superfund Technical Assessment and Response Team, 1290 1291 START 3, EPA Region 8, Contract No. EP-W-05-050, August 30, 2010. 1292 http://www2.epa.gov/sites/production/files/documents/PavillionAnalyticalResultsReport.pdf

1293

- 1294 (31) Wyoming Oil and Gas Conservation Commission (WOGCC). Pavillion Field Well Integrity Review, October 8, 1295 2014
- 1296 http://wogcc.state.wy.us/pavillionworkinggrp/PAVILLION REPORT 1082014 Final Report.pdf

1297 1298

(32) Wyoming Oil and Gas Conservation Commission (WOGCC). Pavillion Field Pit Review, November 24, 2014 http://wogcc.state.wy.us/pavillionworkinggrp/Draft%20Pavillion%20Field%20Pits%20Review 11242014.pdf

1299 1300 1301

1302

(33) U.S. Environmental Protection Agency. Groundwater Sampling Results at Locations near Pavillion, WY, Pavillion Phase V (April 2012) Groundwater Quality Results and Quality-Control (QC) Data. Office of Research and Development, National Risk Management Research Laboratory and Region 8, Denver, CO. 2012.

1303 1304 1305

1306

(34) Powder River Basin Resource Council (PRBRC). Copy of Pavillion, WY domestic well 2014 sample results (tables only) provided by Wyoming Department of Environmental Quality on June 8, 2015 per a Freedom of Information Request to the State of Wyoming

1307 1308 1309

(35) EnCana Oil & Gas (USA) Inc. (Encana 2009) Submittal of Material Safety and Data Sheets and Letter to U.S. EPA, Region 8, Denver, CO, October 19, 2009, 3p.

1310 1311

1312 (36) Wyoming Department of Environmental Quality (WYDEQ), Ref: Tribal 21-15, Letter dated 8/14/2012 from John Wagner to Jon Kaminski of BLM Lander District.

1313 1314

1315 (37) U.S. Department of the Interior, Bureau of Land Management (BLM), Wind River/Bighorn Basin District, 1316 Lander Field Office, Lander Wyoming. Ref: Tribal 21-15. Letter dated 8/23/2012 from Jon Kaminski to John Wagner of Wyoming Department of Environmental Quality. 1317

1318

1319 (38) American Society for Testing and Materials (ASTM). ASTM A53 / A53M - 12 Standard Specification for Pipe, 1320 Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless Active Standard ASTM A53 / A53M | Developed 1321 by Subcommittee: A01.09 Book of Standards Volume: 01.01 (accessed 2013)

1322

1323 (39) Houghton, R.L. and Berger, M.L. Effects of well-casing composition and sampling method on apparent quality 1324 of ground water. In Proceedings of the Fourth National Symposium on Aquifer Restoration and Ground Water Monitoring, May 23-25, 1984 National Water Well Association. 1325

1326

(40) Hewitt, A.D. Dynamic study of common well screen materials. Ground Water Monitoring Review, 1994, 87-94. 1327

1328

- 1329 (41) Aller, L., Bennett, T.W., Hackett, G., Petty, R.J., Lehr, J.H., Sedoris, H., Nielsen, D.M., and Denne, J.E.
- 1330 Handbook of Suggested Practices for the Design and Installation of Ground-Water Monitoring Wells,
- Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental 1331
- 1332 Protection Agency, Las Vegas, Nevada. EPA 160014-89 1034, March 1991

1333

1334 (42) U.S. Environmental Protection Agency. Draft RCRA Ground-Water Monitoring Technical Enforcement Guidance Document. Office of Solid Waste and Emergency Response. November 1992 1335

- 1336 (43) Pohlmann, K.F. and Alduino. Potential Sources of Error in Ground-Water Sampling at Hazardous Waste Sites,
- 1337 Ground-Water Issue, U.S. Environmental Protection Agency, Office of Research and Development and Office of
- 1338 Solid Waste and Emergency Response, EPA/540/S-92/019, 1992
- 1339
- 1340 (44) Llopis, J.L. The Effects of Well Casing Material on Ground Water-Quality. Ground-Water Issue, U.S.
- Environmental Protection Agency, Office of Research and Development and Office of Solid Waste and Emergency
- 1342 Response, EPA/540/4-91/005, 1991.

1344 (45) Marsh, J.M. and Lloyd, J.W. Details of hydrochemical variations in flowing wells. *Groundwater*, **1980**, 18 (4), 366-373.

1346

(46) American Society for Testing and Materials (ASTM). Standard Practice for Design and Installation of Ground
 Water Monitoring Wells D5092-04 (reapproved 2010). Philadelphia, PA.

1349

- 1350 (47) Shaw Environmental Services. Draft Work Plan. Borehole Drilling, Well Installation, Well Development, and
- Other Support Services Groundwater Investigation in Pavillion, Wyoming. Attachment 1 Monitoring Well
- 1352 Installation Work Plan Narrative. Contract No. EP-C-08-034. Prepared by Shaw Environmental and Infrastructure,
- 1353 Inc., 312 Directors Drive, Knoxville, TN. Prepared for U.S. Environmental Protection Agency, National Risk
- Management Research Laboratory, Ground Water and Ec osystem Restoration Division, Ada, OK. Project No.
- 1355 135976, April 2010.

1356

- 1357 (48) Shaw Environmental Services. Final Monitoring Well Installation Work Plan Pvillion, Wyoming. Contract No.
- EP-C-08-034. Prepared by Shaw Environmental and Infrastructure, Inc., 312 Directors Drive, Knoxville, TN.
- Prepared for U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Ground
- Water and Ecosystem Restoration Division, Ada, OK. Project No. 135976, May 2010.

1361

(49) U.S. Army Corps of Engineers (USACE). Monitoring Well Design, Installation, and Documentation at
 Hazardous, Toxic, and Radioactive Waste Sites. EM 1110-1-4000. Washington, DC 20314-1000, Nov 1998.

1364 1365

(50) Colangelo, R.V. Inert Annular Space Materials, the Acid Test. Ground Water Monitoring Review, 1988, Spring

1366

(51) Mikkelsen, P.E. Cement-bentonite grout backfill for borehole instruments. *Geotechnical News*, 2002,
 December, pp. 38-42

1369

1370 (52) U.S. Environmental Protection Agency. *Permeation and Leaching*. Office of Water (4601M), Office of Ground
 1371 Water and Drinking Water, Distribution System Issue Paper, August 15, 2002

1372

(53) Alben, K., Bruchet, A., and Shpirt, E. Leachate from Organic Coating Materials Used in Potable Water
 Distribution Systems. Denver, CO, American Water Works Association, Jan 1989

1375

(54) Wright, P.R., McMahon, P.B. Sampling and Analysis Plan for the Characterization of Groundwater Quality in
 Two Monitoring Wells near Pavillion, Wyoming: U.S. Geological Survey Open-File Report 2012–1197, 2012

1378

1379 (55) McAlary T.A. and Barker J.F. Volatilization losses of organics during ground water sampling from low permeability materials. *Ground Water Monitoring Review*, **1987**, 7(4), 63-68.

1381

1382 (56) Roy J.W.; Ryan M.C. In-well degassing issues for measurements of dissolved gases in groundwater. *Ground Water*, **2010**, 48(6), 869-877.

1384

- 1385 (57) Yeskis, D. and B. Zavala. Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers,
 1386 Ground Water Issue Paper, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency
- 1387 Response, EPA 542-S-02-001, 2002

1388

(58) U.S. Geological Survey (USGS). National Field Manual for the Collection of Water-Quality Data. Chapter A4.
 Collection of Water Samples. Revised 2006.

- 1391 (59) Cottrell, G. L. and Myers, D.N. U.S. Geological Service (USGS). Transmittal of Contract Laboratory Results
- and Evaluation of Laboratory-Specific Quality Control Measures, U.S. Environmental Protection Agency
- 1393 Monitoring Well MW02, Pavillion Wyoming 2012, Administrative Report Prepared for the U.S. Environmental
- 1394 Protection Agency. Director Approved August 30, 2012.

(60) Wright, P.R., McMahon, P.B., Mueller, D.K., Clark, M.L. Groundwater-Quality and Quality-Control Data for
 Two Monitoring Wells near Pavillion, Wyoming, April and May 2012: U.S. Geological Survey Data Series 718,
 2012

1398 1399

1400 (61) Humenick, M.J., Turk L.J., and Colchin M.P. (1980). Methodology for monitoring ground water at uranium solution mines. *Ground Water* **1980**, 18(3), 262-273.

1402

1403 (62) Robin M.J.L.; Gillham R.W. Field evaluation of well purging procedures. *Ground Water Monitoring Review* 1404 1987, 7(4), 85-93.

1405

(63) U.S. Environmental Protection Agency. *Investigation of Ground Water Contamination near Pavillion,* Wyoming Phase V Sampling Event, Summary of Methods and Results. Office of Research and Development,
 National Risk Management Research Laboratory and Region 8, Denver, CO. September 2012.

1409

(64) Robbins G.A. and Martin-Hayden, J.M. (1991). Mass balance evaluation of monitoring well purging. Part I:
 Theoretical models and implications for representative sampling. *Journal of Contaminant Hydrology*, 1991, 8, 203-224.

1413

- 1414 (65) Shaw Environmental and Infrastructure, Inc. (Shaw 2012a). Method Development-Alcohol Analysis by P&T
 1415 GC FID. Contract No. EP-C-08-034, Subject: 8OA865CS, May 29, 2012.
- https://foiaonline.regulations.gov/foia/action/public/view/request?objectId=090004d2806a7021

1417 1418

- (66) Shaw Environmental and Infrastructure, Inc. (Shaw 2012b). Method Development-Alcohol Analysis by P&T GC FID. Contract No. EP-C-08-034, Subject: 8OA878DW, May 30, 2012.
- https://foiaonline.regulations.gov/foia/action/public/view/request?objectId=090004d2806a7021

1421

1419

1422 (67) Andersson, K.; Allard, B.; Bengtsson, M.; Magnusson, B. Chemical composition of cement pore solutions.
 1423 Cement and Concrete Research, 1979, 19, 327-332.

1424

(68) Thomas, J.J.; Rothstein, D.; Jennings, H.M.; and Christensen, B.J. Effect of hydration temperature on the
 solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes. *Cement and Concrete Research*, 2003, 33, 2037-2047.

1428

1429 (69) van Eijk, R.J.; Brouwers, H.J.J. Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model. *Cement and Concrete Research*, **2000**, 20, 1801-1806.

1431

(70) Lothenbach, B., Le Saout, G., Gallucci, E., and Scrivener, K. Influence of limestone on the hydration of
 Portland cements. *Cement and Concrete Research*, 2008, 38, 848-860.

1434

(71) Lothenbach, B., Matschei, T., Möschner, G., and Glasser, F.P. Thermodynamic modeling of the effect of temperature on the hydration and porosity of Portland cement. *Cement and Concrete Research*, 2008, 28, 1-18.

1437

1438 (72) Lothenbach, B.; Winnefeld, F. Thermodynamic modeling of the hydration of Portland cement. *Cement and Concrete Research*, **2006**, 36 (2), 209-226.

1440

1441 (73) Rothstein, D.; Thomas, J.J.; Christensen, B.J.; Jennings, H.M. Solubility behavior of Ca-, S-, Al-, and Si-1442 bearing solid phases in Portland cement pore solutions as a function of hydration time. *Cement and Concrete* 1443 *Research*, 2002, 32, 1663-1671.

1444

(74) Barcelona, M.J. and Helfrich, J.A. (1986). Well construction and purging effects on ground-water samples.
 Environmental Science and Technology 1986, 20, 1179-1184.

- (75) Brouwers, H.J.H and van Eijk. Alkali concentrations of pore solution in hydrating OPC. Cement and Concrete
 Research, 2003, 33, 191-196.
- (76) Leemann, A.; Lothenbach, B. The influence of potassium-sodium ratio in cement and concrete expansion due to alkai-aggregate reaction. *Cement and Concrete Research*, 2008, 38, 1162-1168.
 1452
- (77) Engelsen, C.J. Quality Improvers in Cement Making State of the Art. COIN Project P1 Advanced Cementing
 Materials. SP 1.1F Reduced CO2 missions. COIN Project report 2 2008.
 http://www.sintef.no/upload/Byggforsk/Publikasioner/coin-no2.pdf
- 1455 http://www.sintef.no/upload/Byggforsk/Publikasjoner/coin-no2.pdf
 1456

1486

1490

- (78) Ervanne, H., and Hakanen, M. Analysis of Cement Superplasticizers and Grinding Aids, A Literature Survey,
 Working Report, Posiva, 2007
- (79) Jeknavorian, A.A., Barry, E.F., Serafin, F. Determination of grinding aids in Portland cement by pyrolysis gas chromatography-mass spectrometry. *Cement and Concrete Research*, 1998, 28(9), 1335-1345.
 1462
- 1463 (80) Teoreanu, I.; Guslicov, G. Mechanisms and effects of additives from the dihydroxy-compound class on
 1464 Portland cement grinding. Cement and Concrete Research, 1999, 29, 9-15.
 1465
- (81) Smith, B., Siegel, D., Neslund, C. and Carter, C. Organic contaminants in Portland cement used in monitoring well construction. *Groundwater Monitoring & Remediation*, 2014, 34(4), 102-111.
- (82) Beak, D.G; Oberley, G.G.; Ruybal, C.J.; Acree, S.D.; Ross; R.R. Retrospective Case Study in Killdeer, North
 Dakota: Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, U.S. Environmental
 Protection Agency, Office of Research and Development, Washington, DC, EPA/600/R-14/103, May 2015a
 1472
- 1473 (83) Beak, D.G.; Overbay, M.D.; Mravik, S.C. Retrospective Case Study in Wise County, Texas Study of the
 1474 Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, U.S. Environmental Protection Agency,
 1475 Office of Research and Development, Washington, DC, EPA/600/R-14/090, May 2015b
- 1477 (84) Ludwig, R.D.; Beak, D.G.; Wilkin, R.T.; Ruybal, C.J.; Rectenwald, D.J. Retrospective Case Study in
 1478 Northeastern Pennsylvania Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources,
 1479 U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, EPA/600/R-14/088,
 1480 May 2015
- 1481
 1482 (85) Wilkin, R.T.; Lee, T.R.; Ruybal, C.J.; Rectenwald, D.J. Retrospective Case Study in Southwestern
 1483 Pennsylvania Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, U.S.
 1484 Environmental Protection Agency, Office of Research and Development, Washington, DC, EPA/600/R-14/084,
 1485 May 2015
- 1487 (86) Wolfe, A.L; Wilkin, R.T; Lee, T.R.; Ruybal, C.J.; Oberley, G.G. Retrospective Case Study in the Raton Basin,
 1488 Colorado Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources U.S. Environmental
 1489 Protection Agency Office of Research and Development Washington, DC, EPA/600/R-14/091, May 2015
- (87) U.S. Environmental Protection Agency (EPA 2010b). Background Information for the Leaching Environmental
 Assessment Framework (LEAF) Test Methods, Appendix C Preliminary Version of Method 1315, EPA/600/R 10/170, November 2010, Office of Research and Development, National Risk Management Research Laboratory,
 Research Triangle Park, NC
- 1496 (88) Crank, J. The Mathematics of Diffusion, Second Edition, Oxford University Press, New York, 1975, 414p.